Skip to main content

A Smart Neighbourhood Simulation Tool for Shared Energy Storage and Exchange

  • Conference paper
  • First Online:
Analytical and Stochastic Modelling Techniques and Applications (ASMTA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9845))

Abstract

Funding policies and legislation by the European Union for the installation of photovoltaic (PV) arrays in the residential sector have led to a steady and successful increase in renewable energy generation by small-scale private producers. In Germany, even the installation of local storage systems is being subsidised. Differing feed-in tariffs, as well as variable production and demand profiles result in very dissimilar amortisation curves for such investments. This paper presents a software tool which allows for the computation of such curves by means of simulation in MATLAB/Simulink. It enables the exploration of a wide search space by manipulating settings on the levels of individual houses, as well as entire neighbourhoods which might want to share in (the cost of) local energy storage. Additionally, a case study underlines the tool’s potential, as well as benefits of shared energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    kWp = Kilowatt-peak, i.e. the power rating of a photovoltaic array in kilowatts (kW) at standard test conditions [2].

  2. 2.

    Technically this is inaccurate, since compensation is only paid starting with the first day that electricity is produced and fed into the grid instead of depending on the date of installation [1].

  3. 3.

    Available at http://www.uni-muenster.de/Informatik.AGRemke/forschung/tools/smart-neighbourhood.html.

References

  1. Gesetz für den Ausbau erneuerbarer Energien (in German). Bundesgesetzblatt I(33), 1066, July 2014

    Google Scholar 

  2. PVWatts. http://pvwatts.nrel.gov/

  3. System Advisor Model (SAM). https://sam.nrel.gov/

  4. Tesla Powerwall. https://www.teslamotors.com/powerwall

  5. BDEW Bundesverband der Energie - und Wasserwirtschaft e.V.: StrompreisanalyseMärz 2015 (in German), March 2015

    Google Scholar 

  6. Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post undEisenbahnen: Photovoltaic installations data submissions and EEG-supportedfeed-in tariffs. http://www.bundesnetzagentur.de/cln_1432/EN/Areas/Energy/Companies/RenewableEnergy/PV_data_tariffs/PV_statistic_node.html

  7. van der Burgt, J., Sauba, G., Varvarigos, E., Makris, P.: Demonstration of the smart energy neighbourhood management system in the VIMSEN project. In: PowerTech, 2015 IEEE Eindhoven, pp. 1–6, June 2015

    Google Scholar 

  8. Bussar, R., Lippert, M., Bonduelle, G., Linke, R., Crugnola, G., Cilia, J., Merz, K.D., Heron, C., Marckx, E.: Battery energy storage for smart grid applications. In: EuroBat, May 2013

    Google Scholar 

  9. Couture, T.D., Cory, K., Kreycik, C., Williams, E.: Policymaker’s guide to feed-in tariff policy design. Technical report NREL/TP-6A2-44849, National Renewable Energy Laboratory (NREL), Golden, CO, July 2010

    Google Scholar 

  10. Darghouth, N.R., Barbose, G., Wiser, R.H.: Customer-economics of residential photovoltaic systems (Part 1): the impact of high renewable energy penetrations on electricity bill savings with net metering. Energy Policy 67, 290–300 (2014)

    Article  Google Scholar 

  11. Dobos, A.P.: PVWatts Version 5 Manual, September 2014. http://www.nrel.gov/docs/fy14osti/62641.pdf

  12. EnergieAgentur.NRW GmbH: Erhebung “Wo im Haushalt bleibt der Strom?” (in German), April 2011

    Google Scholar 

  13. European Environment Agency: Electricity consumption per capita (in kWh/cap) in 2008. http://www.eea.europa.eu/data-and-maps/figures/electricity-consumption-per-capita-in-1

  14. Ghasemieh, H., Haverkort, B., Jongerden, M., Remke, A.: Energy resilience modelling for smart houses. In: 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 275–286, June 2015

    Google Scholar 

  15. Guo, Y., Pan, M., Fang, Y.: Optimal power management of residential customers in the smart grid. IEEE Trans. Parallel Distrib. Syst. 23(9), 1593–1606 (2012)

    Article  Google Scholar 

  16. Hansen, A.D., Sørensen, P.E., Hansen, L.H., Bindner, H.W.: Models for a stand-alone PV system (2001)

    Google Scholar 

  17. Hermans, P.: Role of DATA Handling in the Dutch Energy Market. http://www.smartgrids.eu/documents/eventsandworkshops/2015/Stedin_Hermans_Peter-Role_of_DATA_handling_in_the_Dutch_energy_market.pdf

  18. Hoppmann, J., Volland, J., Schmidt, T.S., Hoffmann, V.H.: The economic viability of battery storage for residential solar photovoltaic systems – a review and a simulation model. Renew. Sustain. Energy Rev. 39, 1101–1118 (2014)

    Article  Google Scholar 

  19. Ilic, D., Da Silva, P., Karnouskos, S., Griesemer, M.: An energy market for trading electricity in smart grid neighbourhoods. In: 2012 6th IEEE International Conference on Digital Ecosystems Technologies (DEST), pp. 1–6, June 2012

    Google Scholar 

  20. Joe-Wong, C., Sen, S., Ha, S., Chiang, M.: Optimized day-ahead pricing for smart grids with device-specific scheduling flexibility. IEEE J. Sel. Areas Commun. 30(6), 1075–1085 (2012)

    Article  Google Scholar 

  21. Jongerden, M., Haverkort, B.: Which battery model to use? IET Softw. 3(6), 445–457 (2009)

    Article  Google Scholar 

  22. Karnouskos, S., Da Silva, P., Ilic, D.: Developing a web application for monitoring and management of smart grid neighborhoods. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN), pp. 408–413, July 2013

    Google Scholar 

  23. Morvaj, B., Lugaric, L., Krajcar, S.: Demonstrating smart buildings and smart grid features in a smart energy city. In: Proceedings of 2011 3rd International Youth Conference on Energetics (IYCE), pp. 1–8, July 2011

    Google Scholar 

  24. Paterakis, N., Pappi, I., Catalao, J., Erdinc, O.: Optimal operational and economical coordination strategy for a smart neighborhood. In: PowerTech, 2015 IEEE Eindhoven, pp. 1–6, June 2015

    Google Scholar 

  25. Samadi, P., Mohsenian-Rad, A.H., Schober, R., Wong, V., Jatskevich, J.: Optimal real-time pricing algorithm based on utility maximization for smart grid. In: 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 415–420, October 2010

    Google Scholar 

  26. Sterner, M., Eckert, F., Thema, M., Bauer, F.: Der positive Beitragdezentraler Batteriespeicher für eine stabile Stromversorgung (in German), Forschungsstelle Energienetze und Energiespeicher (FENES) OTH Regensburg, Kurzstudie im Auftrag von BEE e.V. und Hannover Messe, Regensburg/Berlin/Hannover (2015)

    Google Scholar 

  27. Ursachi, A., Bordeasu, D.: Smart grid simulator. Int. J. Civ. Archit. Struct. Constr. Eng. 8, 519–522 (2014)

    Google Scholar 

  28. Velik, R.: Battery storage versus neighbourhood energy exchange to maximize local photovoltaics energy consumption in grid-connected residential neighbourhoods. Int. J. Adv. Renew. Energy Res. 2(6) (2013)

    Google Scholar 

  29. Velik, R.: The influence of battery storage size on photovoltaics energy self-consumption for grid-connected residential buildings. Int. J. Adv. Renew. Energy Res. 2(6) (2013)

    Google Scholar 

  30. Velik, R.: East-West orientation of PV systems and neighbourhood energy exchange to maximize local photovoltaics energy consumption. Int. J. Renew. Energy Res. (IJRER) 4(3), 566–570 (2014)

    Google Scholar 

  31. Xiao, L., Mandayam, N., Poor, H.: Prospect theoretic analysis of energy exchange among microgrids. IEEE Trans. Smart Grid 6(1), 63–72 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Remke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Biech, M., Bigdon, T., Dielitz, C., Fromme, G., Remke, A. (2016). A Smart Neighbourhood Simulation Tool for Shared Energy Storage and Exchange. In: Wittevrongel, S., Phung-Duc, T. (eds) Analytical and Stochastic Modelling Techniques and Applications. ASMTA 2016. Lecture Notes in Computer Science(), vol 9845. Springer, Cham. https://doi.org/10.1007/978-3-319-43904-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43904-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43903-7

  • Online ISBN: 978-3-319-43904-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics