Skip to main content

The Directed Search Method for Unconstrained Parameter Dependent Multi-objective Optimization Problems

  • Chapter
  • First Online:
NEO 2015

Abstract

In this chapter we present the adaptions of the recently proposed Directed Search method to the context of unconstrained parameter dependent multi-objective optimization problems (PMOPs). The new method, called \(\lambda \)-DS, is capable of performing a movement both toward and along the solution set of a given differentiable PMOP. We first discuss the basic variants of the method that use gradient information and describe subsequently modifications that allow for a gradient free realization. Finally, we show that \(\lambda \)-DS can be used to understand the behavior of stochastic local search within PMOPs to a certain extent which might be interesting for the development of future local search engines, or evolutionary strategies, for the treatment of such problems. We underline all our statements with several numerical results indicating the strength of the novel approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Named after the works of Karush [18] and Kuhn and Tucker [19].

  2. 2.

    If the rank of a matrix \(A\in \mathbb {R}^{m\times n}\), \(m\le n\), is m (i.e., maximal), its pseudo inverse is given by \(A^+ = A^T(AA^T)^{-1}\in \mathbb {R}^{n\times m}\).

  3. 3.

    Furthermore, we note that the original idea of NBI for a given MOP is not to maximize the distance from \(F(x_0)\) for a given point \(x_0\), but this is a straightforward adaption to the current context to steer the search in a given direction d.

  4. 4.

    We consider in our computations only the case \(l=1\).

  5. 5.

    Diverse neighborhood relationships can be established, in this work we induced it through the Euclidean distance.

References

  1. Allgower, E.L., Georg, K.: Numerical Continuation Methods. Springer, Heidelberg (1990)

    Google Scholar 

  2. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-Linear Parametric Optimization. Akademie, Berlin (1982)

    Google Scholar 

  3. Bosman, P.A.N.: On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization. IEEE Trans. Evol. Comput. 16(1), 51–69 (2012)

    Google Scholar 

  4. Branke, J.: Evolutionary approaches to dynamic optimization problems-updated survey. In: GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pp. 27–30 (2001)

    Google Scholar 

  5. Branke, J., Kaußler, T., Schmidt, C., Schmeck, H.: A multi-population approach to dynamic optimization problems. In: Evolutionary Design and Manufacture, pp. 299–307. Springer, Heidelberg (2000)

    Google Scholar 

  6. Brown, M., Smith, R.E.: Signals directed multi-objective optimization. Int. J. Comput. Syst. 6(1), 3–17 (2005)

    Google Scholar 

  7. Bu, Z., Zheng, B.: Perspectives in dynamic optimization evolutionary algorithm. In: Advances in Computation and Intelligence, pp. 338–348. Springer, Heidelberg (2010)

    Google Scholar 

  8. Carlos, A., Coello, C., Cortés, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genet. Programm. Evolv. Mach. 6(2), 163–190 (2005)

    Google Scholar 

  9. Das, I., Dennis, J.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto sets by multilevel subdivision techniques. J. Optim. Theory Appl. 124, (2005)

    Google Scholar 

  11. Dellnitz, Michael, Witting, Katrin: Computation of robust Pareto points. Int. J. Comput. Sci. Math. 2(3), 243–266 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ehrgott, M., Wiecek, M.M.: Multiobjective programming. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 667–722. Springer, Heidelberg (2005)

    Google Scholar 

  13. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425–442 (2004)

    Article  MATH  Google Scholar 

  14. Gass, S., Saaty, T.: The computational algorithm for the parametric objective function. Nav. Res. Logist. Quart. 2, 39–45 (1955)

    Article  MathSciNet  Google Scholar 

  15. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)

    Google Scholar 

  16. Hernández, V.A.S.: On the Numerical Treatment of Parametric Multi-Objective Optimization Problems and Memetic Evolutionary Algorithms. Dissertation, CINVESTAV-IPN (2013)

    Google Scholar 

  17. Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach, vol. 135. Springer Science and Business Media, Heidelberg (2001)

    Google Scholar 

  18. Karush, W.E.: Minima of functions of several variables with inequalities as side conditions. Ph.D. thesis, University of Chicago (1939)

    Google Scholar 

  19. Kuhn, H., Tucker, A.: Nonlinear programming. In: Neumann, J. (ed.) Proceeding of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492 (1951)

    Google Scholar 

  20. Martín, A., Schütze, O.: A new predictor corrector variant for unconstrained bi-objective optimization problems. In: Tantar, A. et al., (ed) EVOLVE V, pp. 165–179. Springer, Heidelberg (2014)

    Google Scholar 

  21. Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: Certified parallelotope continuation for one-manifolds. SIAM J. Numer. Anal. 51(6), 3373–3401 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: On continuation methods for non-linear bi-objective optimization: towards a certified interval-based approach. J. Glob. Optim. 1–14 (2014)

    Google Scholar 

  23. Mejia, E., Schütze, O.: A predictor corrector method for the computation of boundary points of a multi-objective optimization problem. In: International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2010), pp. 395–399 (2010)

    Google Scholar 

  24. Miettinen, Kaisa: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  25. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, Springer, Heidelberg (2006)

    Google Scholar 

  26. Pareto, V.: Manual of Political Economy. The MacMillan Press, London (1971). (original edition in French in 1927)

    Google Scholar 

  27. Pereyra, V.: Fast computation of equispaced Pareto manifolds and Pareto fronts for multiobjective optimization problems. Math. Comput. Simul. 79(6), 1935–1947 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Recchioni, M.C.: A path following method for box-constrained multiobjective optimization with applications to goal programming problems. Math. Methods Oper. Res. 58, 69–85 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ringkamp, M., Ober-Blöbaum, S., Dellnitz, M., Schütze, O.: Handling high dimensional problems with multi-objective continuation methods via successive approximation of the tangent space. Eng. Optim. 44(6), 1117–1146 (2012)

    Article  MathSciNet  Google Scholar 

  30. Rudolph, G., Schütze, O., Grimme, C., Dominguez-Medina, C., Trautmann, H.: Optimal averaged hausdorff archives for bi-objective problems: theoretical and numerical results. Theoretical and Numerical Results Computational and Applied Optimization (to appear) (2016)

    Google Scholar 

  31. Schütze, O.: Set Oriented Methods for Global Optimization. Ph.D. thesis, University of Paderborn (2004). http://ubdata.uni-paderborn.de/ediss/17/2004/schuetze/

  32. Schütze, O., Esquivel, X., Lara, A., Carlos, A., Coello, C.: Using the averaged Hausdorff distance as a performance measure in evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

    Google Scholar 

  33. Schütze, O., Laumanns, M., Tantar, E., Carlos, C., Talbi, E.: Computing gap free pareto front approximations with stochastic search algorithms. Evol. Comput. 18(1), 65–96 (2010)

    Google Scholar 

  34. Schütze, O., Martín, A., Lara, A., Alvarado, S., Salinas, E., Coello, C.A.C.: The directed search method for multi-objective memetic algorithms. Comput. Optim. Appl. 1–28 (2015)

    Google Scholar 

  35. Tantar, A-A., Danoy, G., Bouvry, P., Khan, S.U.: Energy-efficient computing using agent-based multi-objective dynamic optimization. In: Green IT: Technologies and Applications, pp. 267–287. Springer, Heidelberg (2011)

    Google Scholar 

  36. Tantar, A-A., Tantar, E., Bouvry, P.: A classification of dynamic multi-objective optimization problems. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 105–106. ACM, New York (2011)

    Google Scholar 

  37. Tinós, R., Yang, S.: A self-organizing random immigrants genetic algorithm for dynamic optimization problems. Genet. Program. Evolv. Mach. 8(3), 255–286 (2007)

    Google Scholar 

  38. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. Ph.D. thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio (1999)

    Google Scholar 

  39. Witting, K.: Numerical Algorithms for the Treatment of Parametric Multiobjective Optimization Problems and Applications. Dissertation, Universität Paderborn (2012)

    Google Scholar 

  40. Witting, K., Ober-Blöbaum, S., Dellnitz, M.: A variational approach to define robustness for parametric multiobjective optimization problems. J. Glob. Optim. 57(2), 331–345 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Witting, K., Schulz, B., Dellnitz, M., Böcker, J., Fröhleke, N.: A new approach for online multiobjective optimization of mechatronic systems. Int. J. Softw. Tools Technol. Trans. 10(3), 223–231 (2008)

    Article  Google Scholar 

  42. Yang, S.: Genetic algorithms with elitism-based immigrants for changing optimization problems. In: Applications of Evolutionary Computing, pp. 627–636. Springer, Heidelberg (2007)

    Google Scholar 

  43. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, vol. 4403, pp. 832–846. Springer, Heidelberg (2007)

    Google Scholar 

Download references

Acknowledgments

A. Sosa acknowledges support from the Conacyt to pursue his Ph.D. studies at the CINVESTAV-IPN. A. Lara acknowledges support from project SIP20162103. H. Trautmann acknowledges support from the European Center of Information Systems (ERCIS). All authors acknowledge support from DAAD project no. 57065955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Adrián Sosa Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adrián Sosa Hernández, V., Lara, A., Trautmann, H., Rudolph, G., Schütze, O. (2017). The Directed Search Method for Unconstrained Parameter Dependent Multi-objective Optimization Problems. In: Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds) NEO 2015. Studies in Computational Intelligence, vol 663. Springer, Cham. https://doi.org/10.1007/978-3-319-44003-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44003-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44002-6

  • Online ISBN: 978-3-319-44003-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics