Skip to main content

Multi-objective Optimal Design of Nonlinear Controls

  • Chapter
  • First Online:
NEO 2015

Part of the book series: Studies in Computational Intelligence ((SCI,volume 663))

Abstract

The most important part of the control design for nonlinear dynamical systems is to guarantee the stability . Then, the control is quantitatively designed to meet multiple and often conflicting performance objectives. The performance of the closed-loop system is a function of various system and control parameters. The quantitative design using multiple parameters to meet multiple conflicting performance objectives is a challenging task. In this chapter, we present the recent results of Pareto optimal design of controls for nonlinear dynamical systems by using the advanced algorithms of multi-objective optimization. The controls can be of linear PID type or nonlinear feedback such as sliding mode. The advanced algorithms of multi-objective optimization consist of parallel cell mapping methods with sub-division techniques. Interesting examples of linear and nonlinear controls are presented with extensive numerical simulations.

Honorary Professor of Tianjin University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arumugam, M.S., Rao, M.V.C., Palaniappan, R.: New hybrid genetic operators for real coded genetic algorithm to compute optimal control of a class of hybrid systems. Appl. Soft Comput. 6(1), 38–52 (2005)

    Article  Google Scholar 

  2. Azhmyakov, V.: An approach to controlled mechanical systems based on the multiobjective optimization technique. J. Ind. Manag. Optim. 4(4), 697–712 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coello Coello, C., Lamont, G.B., Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, New York (2007)

    MATH  Google Scholar 

  4. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algorithms for solving constrained optimization problems. Comput. Oper. Res. 38(12), 1877–1896 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gambier, A., Badreddin, E.: Multi-objective optimal control: an overview. In: Proceedings of the 16th IEEE International Conference on Control Applications. Part of IEEE Multi-Conference on Systems and Control, Piscataway, NJ, USA, pp. 170–175 (2007)

    Google Scholar 

  6. Garai, G., Chaudhurii, B.B.: A novel hybrid genetic algorithm with Tabu search for optimizing multi-dimensional functions and point pattern recognition. Inf. Sci. 221, 28–48 (2012)

    Article  Google Scholar 

  7. Guo, X., Mei, C.: Application of aeroelastic modes on nonlinear supersonic panel flutter at elevated temperatures. Comput. Struct. 84(24–25), 1619–1628 (2006)

    Article  Google Scholar 

  8. Hernández, C., Naranjani, Y., Sardahi, Y., Liang, W., Schütze, O., Sun, J.Q.: Simple cell mapping method for multiobjective optimal PID control design. Int. J. Dyn. Control 1(3) (2013). doi:10.1007/s40435-013-0021-1

  9. Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach, vol. 135. Springer Science and Business Media, Heidelberg (2001)

    Book  MATH  Google Scholar 

  10. Kanagaraj, G., Ponnambalam, S.G., Jawahar, N.: A hybrid cuckoo search and genetic algorithm for reliability-redundancy allocation problems. Comput. Ind. Eng. 66(4), 1115–1124 (2013)

    Article  Google Scholar 

  11. Kim, S.H., Lee, I.: Aeroelastic analysis of a flexible airfoil with a freeplay non-linearity. J. Sound Vibration 193(4), 823–846 (1996)

    Article  Google Scholar 

  12. Kumar, C.A., Nair, N.K.: Multi-objective PI controller design with an application to speed control of permanent magnet DC motor drives. In: Proceedings of International Conference on Signal Processing. Communication, Computing and Networking Technologies, Piscataway, New Jersey, pp. 424–429 (2011)

    Google Scholar 

  13. Kuo, R.J., Zulvia, F.E., Suryadi, K.: Hybrid particle swarm optimization with genetic algorithm for solving capacitated vehicle routing problem with fuzzy demand - a case study on garbage collection system. Appl. Math. Comput. 219(5), 2574–2588 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artif. Intell. Rev. 13(2), 129–170 (1999)

    Article  Google Scholar 

  15. Li, Z., Yiu, K.F.C., Feng, Z.: A hybrid descent method with genetic algorithm for microphone array placement design. Appl. Soft Comput. 13(3), 1486–1490 (2013)

    Article  Google Scholar 

  16. Librescu, L., Chiocchia, G., Marzocca, P.: Implications of cubic physical/aerodynamic non-linearities on the character of the flutter instability boundary. Int. J. Non-Linear Mech. 38(2), 173–199 (2003)

    Article  MATH  Google Scholar 

  17. Liu, J.K., Zhao, L.C.: Bifurcation analysis of airfoils in incompressible flow. J. Sound Vibration 154(1), 117–124 (1992)

    Article  MATH  Google Scholar 

  18. Liu, X., Luo, X., Ma, H.: Studies on the retrofit of heat exchanger network based on the hybrid genetic algorithm. Appl. Thermal Eng. 62(2), 785–790 (2013)

    Article  Google Scholar 

  19. Naranjani, Y., Hernández, C., Xiong, F.R., Schütze, O., Sun, J.Q.: A hybrid algorithm for the simple cell mapping method in multi-objective optimization. In: Emmerich, M., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Advances in Intelligent Systems and Computing, vol. 227, pp. 207–223. Springer International Publishing, Switzerland (2013)

    Chapter  Google Scholar 

  20. Naranjani, Y., Sardahi, Y., Sun, J.Q., Hernández, C., Schütze, O.: Fine structure of pareto front of multi-objective optimal feedback control design. In: Proceedings of ASME 2013 Dynamic Systems and Control Conference, pp. V001T15A009–V001T15A009 (2013)

    Google Scholar 

  21. Pareto, V.: Manual of Political Economy. The MacMillan Press (1971) (original edition in French in 1927)

    Google Scholar 

  22. Qin, Z.C., Xiong, F.R., Hernández, C., Fernandez, J.U., Ding, Q., Schütze, O., Sun, J.Q.: Multi-objective optimal design of sliding mode control with parallel simple cell mapping method. J. Vibration Control (2015). doi:10.1177/1077546315574948

  23. Qin, Z.C., Xiong, F.R., Sun, J.Q.: An experimental study of robustness of multi-objective optimal sliding mode control. J. Vibration Acoust. 138(5) (2015). doi:10.1115/1.4033494

  24. Shuai, X., Zhou, X.: A genetic algorithm based on combination operators. Procedia Environ. Sci. 11, Part A, 346–350 (2011)

    Google Scholar 

  25. Sioud, A., Gravel, M., Gagné, C.: A hybrid genetic algorithm for the single machine scheduling problem with sequence-dependent setup times. Comput. Oper. Res. 39(10), 2415–2424 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vroemen, B., Jager, B.D.: Multiobjective control: an overview. In: Proceedings of the 36th IEEE Conference on Decision and Control, New York, NY, USA, vol. 1, pp. 440–445 (1997)

    Google Scholar 

  27. Wang, N.F., Zhang, X.M., Yang, Y.W.: A hybrid genetic algorithm for constrained multi-objective optimization under uncertainty and target matching problems. Appl. Soft Comput. 13(8), 3636–3645 (2013)

    Article  Google Scholar 

  28. Xiong, F., Qin, Z., Hernández, C., Sardahi, Y., Narajani, Y., Liang, W., Xue, Y., Schütze, O., Sun, J.Q.: A multi-objective optimal PID control for a nonlinear system with time delay. Theor. Appl. Mech. Lett. 3, 063006 (2013)

    Article  Google Scholar 

  29. Xiong, F.R., Qin, Z.C., Ding, Q., Hernádez, C., Fernandez, J., Schütze, O., Sun, J.Q.: Parallel cell mapping method for global analysis of high-dimensional nonlinear dynamical systems. J. Appl. Mech. 82(11) (2015). doi:10.1115/1.4031149

  30. Xiong, F.R., Schütze, O., Ding, Q., Sun, J.Q.: Finding zeros of nonlinear functions using the hybrid parallel cell mapping method. Commun. Nonlinear Sci. Numer. Simul. 34, 23–37 (2016)

    Article  MathSciNet  Google Scholar 

  31. Zameer, A., Mirza, S.M., Mirza, N.M.: Core loading pattern optimization of a typical two-loop 300MWe PWR using simulated annealing (SA), novel crossover genetic algorithms (GA) and hybrid (GA SA) schemes. Ann. Nuclear Energy 65, 122–131 (2014)

    Article  Google Scholar 

  32. Zeidi, J.R., Javadian, N., Tavakkoli-Moghaddam, R., Jolai, F.: A hybrid multi-objective approach based on the genetic algorithm and neural network to design an incremental cellular manufacturing system. Comput. Ind. Eng. 66(4), 1004–1014 (2013)

    Article  Google Scholar 

  33. Zhao, H., Tsu, T.: Research on multiobjective optimization control for nonlinear unknown systems. In: Proceedings of the 12th International Fuzzy Systems Conference, Piscataway, NJ, USA, vol. 1, pp. 402–407 (2003)

    Google Scholar 

  34. Zhao, J.Q., Wang, L., Zeng, P., Fan, W.H.: An effective hybrid genetic algorithm with flexible allowance technique for constrained engineering design optimization. Expert Syst. Appl. 39(5), 6041–6051 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The material in this chapter is based on work supported by grants (11172197, 11332008 and 11572215) from the National Natural Science Foundation of China, and a grant from the University of California Institute for Mexico and the United States (UC MEXUS) and the Consejo Nacional de Ciencia y Tecnología de México (CONACYT) through the project “Hybridizing Set Oriented Methods and Evolutionary Strategies to Obtain Fast and Reliable Multi-objective Optimization Algorithms”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Q. Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Qin, ZC., Xiong, FR., Sardahi, Y., Naranjani, Y., Schütze, O., Sun, J.Q. (2017). Multi-objective Optimal Design of Nonlinear Controls. In: Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds) NEO 2015. Studies in Computational Intelligence, vol 663. Springer, Cham. https://doi.org/10.1007/978-3-319-44003-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44003-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44002-6

  • Online ISBN: 978-3-319-44003-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics