Skip to main content

Hybrid Adaptive Systems of Computational Intelligence and Their On-line Learning for Green IT in Energy Management Tasks

  • Chapter
  • First Online:
Green IT Engineering: Concepts, Models, Complex Systems Architectures

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 74))

Abstract

In this book chapter, we have considered a topical problem of intelligent energy management, which arises in the context of an intensively developed science direction—Green IT. The hybrid neuro-neo-fuzzy system and its high-speed learning algorithm are proposed. This system can be used for on-line prediction of essentially non-stationary nonlinear chaotic and stochastic time series, which describe electrical load producing and consuming processes. The considered hybrid adaptive system of computational intelligence has some advantages over the conventional artificial neural networks and neuro-fuzzy systems. The proposed hybrid neuro-neo-fuzzy prediction system provides a high quality load prediction that is very important for power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, A., Khan, M.R.: Neuro-fuzzy paradigms for intelligent energy management. In: Abraham, A., Jain, L., Zwaag, B.J. (eds.) Innovations in Intelligent Systems, Part 2, pp. 285–314. Springer, Berlin (2004)

    Google Scholar 

  2. Khotanzad, A., Hwang, R.C., Abaye, A., Maratukulam, D.: An adaptive modular artificial neural network hourly load forecaster and its implementation at electric utilities. IEEE Trans. Power Syst. 10(3), 1716–1722 (1995)

    Article  Google Scholar 

  3. Kiartzis, S.J., Zoumas, C.E., Theocharis, J.B., Bakirtzis, A.G., Petridis, V.: Short-term load forecasting in an autonomous power system using artificial Neural Networks. IEEE Trans. Power Syst. 12(4), 1591–1596 (1997)

    Article  Google Scholar 

  4. Khotanzad, A., Afkhami-Rohani, R., Maratukulam, D.: ANNSTLF-artificial neural network short-term load forecaster-generation tree. IEEE Trans. Power Syst. 13(4), 1413–1422 (1998)

    Article  Google Scholar 

  5. Abraham, A.: An evolving fuzzy neural network model based reactive power control. In: Proceedings of the Second International Conference on Computers in Industry, pp. 247–253, Bahrain (2000)

    Google Scholar 

  6. Abraham, A., Nath, B.: A neuro-fuzzy approach for forecasting electricity demand in victoria. Appl. Soft Comput. 1(2), 127–138 (2001)

    Article  Google Scholar 

  7. Hippert, H.S., Pedreira, C.E., Souza, R.C.: Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans. Power Syst. 16(1), 44–55 (2001)

    Article  Google Scholar 

  8. Khan, M.R., Zak, L., Ondrusek, C.: Forecasting weekly load using a hybrid fuzzy-neural network approach. Int. J. Eng. Mech. 5, 327–336 (2001)

    Google Scholar 

  9. Bodyanskiy, Y., Popov, S., Rybalchenko, T.: Multilayer neuro-fuzzy network for short term electric load forecasting. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Third International Computer Science Symposium in Russia, CSR 2008 Moscow, Russia, 7–12 June 2008. Lecture Notes in Computer Science, vol. 5010, pp. 339–348, Springer, Berlin (2008)

    Google Scholar 

  10. Bodyanskiy, Y., Popov, S., Rybalchenko, T.: Feedforward neural network with a specialized architecture for estimation of the temperature influence on the electric load. In: Proceedings Forth International IEEE Conference on Intelligent Systems, Golden Sands Resort, vol. 1, pp. 7.14–7.18, Varna, Bulgaria (2008)

    Google Scholar 

  11. Bodyanskiy, Y., Otto, P., Babenko, A., Popov, S.: Neural network approach to signals parameters estimation in electric power systems. In: Proceedings 55 International Wiss. Koll. “Crossing Borders within ABC Automation, Biomedical Engineering and Computer Science”, pp. 173–179, Ilmenau, TUI (2010)

    Google Scholar 

  12. Roessler, F., Teich, T., Franke, S.: Neural networks for smart homes and energy efficiency. In: Katalinic, B. (ed.) DAAAM International Scientific Book, pp. 305–314. DAAAM International Publishing, Vienna (2012)

    Google Scholar 

  13. Reaz, M.B.I.: Artificial intelligence techniques for advanced smart home implementation. Acta Technica Corvininesis Bull. Eng. 6(2), 51–57 (2013)

    MathSciNet  Google Scholar 

  14. Lee, S-H., Lee, S-J., Moon, K-I.: An ANFIS control system for smart home. Int. J. Adv. Comput. Technol. 5(11), 464–470 (2013)

    Google Scholar 

  15. Lee, S.-H., Lee, S.-J., Moon, K.-I.: Smart home security system using multiple ANFIS. Int. J. Smart Home 7(3), 121–132 (2013)

    MathSciNet  Google Scholar 

  16. Kim, J.H., Lee, M.J. (eds.): Green IT: Technologies and Applications. Springer, Berlin (2011)

    Google Scholar 

  17. Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  18. Mumford, C.L.: Computational Intelligence Collaboration, Fusion and Emergence. Springer, Berlin (2009)

    MATH  Google Scholar 

  19. Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., Held, P.: Computational Intelligence. A Methodological Introduction. Springer, Berlin (2013)

    MATH  Google Scholar 

  20. Du, K.-L., Swamy, M.N.S.: Neural Networks and Statistical Learning. Springer, London (2014)

    Book  MATH  Google Scholar 

  21. Aggarwal, C.C.: Data Mining: The Textbook. Springer, Switzerland (2015)

    Book  MATH  Google Scholar 

  22. Bifet, A.: Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams. IOS Press, Amsterdam (2010)

    MATH  Google Scholar 

  23. Aggarwal, C. (ed.): Data Stream: Models and Algorithms. Springer Science+Bussiness Media, LLC, N.Y. (2007)

    Google Scholar 

  24. Jang, R.J.-S.: ANFIS: Adaptive Network Based Fuzzy Inference Systems. IEEE Trans. Syst. Man Cybern. 23(3), 116–132 (1993)

    Google Scholar 

  25. Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman and Hall, London (1990)

    MATH  Google Scholar 

  26. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer (2013)

    Google Scholar 

  27. Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and its Applications to Modeling and Control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Google Scholar 

  28. Sugeno, M., Kang, G.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yamakawa, T., Uchino, E., Miki, T., Kusanagi, H.: A neo-fuzzy neuron and its applications to system identification and prediction of the system behavior. In: Proceedings 2-nd International Conference on Fuzzy Logic and Neural Networks (IIZUKA-92), Iizuka, Japan, 17–22 July 1992, pp. 477–483 (1992)

    Google Scholar 

  30. Uchino, E., Yamakawa, T.: Soft computing based signal prediction, restoration and filtering. In: Ruan, D. (ed.) Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks and Genetic Algorithms, pp. 331–349. Kluwer Academic Publishers, Boston (1997)

    Chapter  Google Scholar 

  31. Miki, T., Yamakawa, T.: Analog implementation of neo-fuzzy neuron and its on-board learning. In: Mastorakis, N.E. (ed.) Computational Intelligence and Application, pp. 144–149. WSES Press, Piraeus (1999)

    Google Scholar 

  32. Bodyanskiy, Y., Setlak, G., Pliss, I., Vynokurova, O.: Hybrid neuro-neo-fuzzy system and its adaptive learning algorithm. In: Proceedings of Xth IEEE International Scientific and Technical Conference “Computer Science and Information Technologies”, Lviv, Ukraine, Sept 2015, pp. 111–114 (2015)

    Google Scholar 

  33. Bodyanskiy, Y., Gorshkov, Y., Kolodyazhniy, V., Rvacheva, T.: Hybrid neuro-fuzzy network with variable shape basis function. In: Proceedings East West Fuzzy Colloquium, Zittau/Goerlitz, Germany, 13–15 Sept 2006, pp. 322–331 (2006)

    Google Scholar 

  34. Bodyanskiy, Y., Gorshkov, Y., Otto, P., Pliss, I.: Medical image analysis using neuro-fuzzy network. In: Proceedings of 54 International Scientific Colloquium. (IWK-2009) Information Technology and Electrical Engineering, Ilmenau, Germany, 9–12 Sept 2009, pp. 243–248 (2009)

    Google Scholar 

  35. Bodyanskiy, Y., Kokshenev, I., Kolodyazhniy, V.: An adaptive learning algorithm for a neo-fuzzy neuron. In: Proceedings of 3rd International Conference of European Union Society for Fuzzy Logic and Technology (EUSFLAT), Zittau, Germany, 10–12 Sept 2003, pp. 375–379 (2003)

    Google Scholar 

  36. Landim, R.P., Rodrigues, B., Silva, S.R., Caminhas, W.M.: A neo-fuzzy-neuron with real time training applied to flux observer for an induction motor. In: Proceedings of IEEE Vth Brazilian Symposium on Neural Networks, Belo Horizonte, 9–11 Dec 1998, pp. 67–72 (1998)

    Google Scholar 

  37. Ye, Bodyanskiy, Tyshchenko, O., Wojcik, W.: Multivariate non-stationary time series predictor based on an adaptive neuro-fuzzy approach. Elektronika 54(8), 10–13 (2013)

    Google Scholar 

  38. Otto, P., Ye, Bodyanskiy, Kolodyazhniy, V.: A new learning algorithm for a forecasting neuro-fuzzy network. Integr. Comput. Aided Eng. 10(4), 399–409 (2003)

    Google Scholar 

  39. Ye, Bodyanskiy, Vynokurova, O.: Hybrid type-2 wavelet-neuro-fuzzy network for businesses process prediction. Bus. Inform. 21, 9–21 (2011)

    Google Scholar 

  40. Deoras, A.: Electricity load forecasting using neural networks. In: Electricity Load and Price Forecasting Webinar Case Study (2011). http://www.mathworks.com/matlabcentral/fileexchange/28684-electricity-load-and-price-forecasting-webinar-case-study/content/Electricity%20Load%20&%20Price%20Forecasting/Load/html/LoadScriptNN.html. Data set from the New England ISO http://www.iso-ne.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgeniy Bodyanskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bodyanskiy, Y., Vynokurova, O., Pliss, I., Peleshko, D. (2017). Hybrid Adaptive Systems of Computational Intelligence and Their On-line Learning for Green IT in Energy Management Tasks. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds) Green IT Engineering: Concepts, Models, Complex Systems Architectures. Studies in Systems, Decision and Control, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-44162-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44162-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44161-0

  • Online ISBN: 978-3-319-44162-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics