Skip to main content

Bioactive Glasses: Advancing from Micro to Nano and Its Potential Application

  • Chapter
  • First Online:
Biocompatible Glasses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 53))

Abstract

Bioactive glasses or bioglasses in short (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses) have attracted much attention in application for bone regeneration since 1970s. With the development of the preparation strategies from conventional quenching to modified sol–gel methods, bioglasses of different structures and varied compositions have been reported as their physicochemical and biological properties being well-studied. Mesoporous bioglasses, which possessed unique mesopore channels for drug delivery, has become a hotspot in the last decade. In this chapter, the fabrication of bioglasses including porous scaffolds, coatings, fibers and particles especially the development of its nanoscale form, and several bioglasses involved composite materials are discussed. Recent studies on therapeutic ion substitution (e.g. Sr, Co) of bioglasses and their biological properties both in vivo and in vitro are mentioned. The potential application of bioglasses in different forms for the hard tissue engineering (e.g. dental implantation, bone regeneration), and some recent reports on soft tissue engineering (e.g. would healing) are also referred to. As one of the most promising candidate for bone/soft tissue regeneration application, both the great chances and challenges, and the potential direction of bioglasses for its development are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hench, L.L.: Bioceramics—from concept to clinic. Am. Ceram. Soc. Bull. 72, 93–98 (1993)

    Google Scholar 

  2. Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5, 117–141 (1971)

    Article  Google Scholar 

  3. Hench, L.L., Polak, J.M.: Third-generation biomedical materials. Science 295, 1014–1017 (2002)

    Article  Google Scholar 

  4. Kaur, G., Pandey, O.P., Singh, K., Homa, D., Scott, B., Pickrell, G.: A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. Part A 102, 254–274 (2014)

    Article  Google Scholar 

  5. Hench, L., Hench, J.W., Greenspan, D.: Bioglass: a short history and bibliography. J. Australas. Ceram. Soc. 40, 1–42 (2004)

    Google Scholar 

  6. Rahaman, M.N., Day, D.E., Bal, B.S., Fu, Q., Jung, S.B., Bonewald, L.F., Tomsia, A.P.: Bioactive glass in tissue engineering. Acta Biomater. 7, 2355–2373 (2011)

    Article  Google Scholar 

  7. Pantano, C.G., Clark, A.E., Hench, L.L.: Multilayer corrosion films on bioglass surfaces. J. Am. Ceram. Soc. 57, 412–413 (1974)

    Article  Google Scholar 

  8. Wu, C.T., Chang, J.: Silicate bioceramics for bone tissue regeneration. J. Inorg. Mater. 28, 29–39 (2013)

    Article  Google Scholar 

  9. Brink, M.: The influence of alkali and alkaline earths on the working range for bioactive glasses. J. Biomed. Mater. Res. 36, 109–117 (1997)

    Article  Google Scholar 

  10. Liang, W., Rahaman, M.N., Day, D.E., Marion, N.W., Riley, G.C., Mao, J.J.: Bioactive borate glass scaffold for bone tissue engineering. J. Non-Cryst. Solids 354, 1690–1696 (2008)

    Article  Google Scholar 

  11. Fu, H., Fu, Q., Zhou, N., Huang, W., Rahaman, M.N., Wang, D., Liu, X.: In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater. Sci. Eng. C Mater. Biol. Appl. 29, 2275–2281 (2009)

    Article  Google Scholar 

  12. Haro Durand, L.A., Vargas, G.E., Romero, N.M., Vera-Mesones, R., Porto-Lopez, J.M., Boccaccini, A.R., Zago, M.P., Baldi, A., Gorustovich, A.: Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J. Mater. Chem. B 3, 1142–1148 (2015)

    Article  Google Scholar 

  13. Zhao, S., Wang, H., Zhang, Y., Huang, W., Rahaman, M.N., Liu, Z., Wang, D., Zhang, C.: Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects. Acta Biomater. 14, 185–196 (2015)

    Article  Google Scholar 

  14. Gao, H.S., Tan, T.N., Wang, D.H.: Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium. J. Control. Release 96, 29–36 (2004)

    Article  Google Scholar 

  15. Brink, M., Turunen, T., Happonen, R.P., YliUrpo, A.: Compositional dependence of bioactivity of glasses in the system Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2. J. Biomed. Mater. Res. 37, 114–121 (1997)

    Article  Google Scholar 

  16. Lin, S., Ionescu, C., Pike, K.J., Smith, M.E., Jones, J.R.: Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J. Mater. Chem. 19, 1276–1282 (2009)

    Article  Google Scholar 

  17. Vedel, E., Arstila, H., Ylanen, H., Hupa, L., Hupa, M.: Predicting physical and chemical properties of bioactive glasses from chemical composition. Part 1: viscosity characteristics. Glass Technol. Eur. J. Glass Sci. Technol. Part A 49, 251–259 (2008)

    Google Scholar 

  18. O’Donnell, M.D.: Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature. Acta Biomater. 7, 2264–2269 (2011)

    Article  Google Scholar 

  19. Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998)

    Article  Google Scholar 

  20. Mamaeva, V., Sahlgren, C., Linden, M.: Mesoporous silica nanoparticles in medicine—recent advances. Adv. Drug Deliv. Rev. 65, 689–702 (2013)

    Article  Google Scholar 

  21. Slowing, I., Viveroescoto, J., Wu, C., Lin, V.: Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60, 1278–1288 (2008)

    Article  Google Scholar 

  22. Henstock, J.R., Canham, L.T., Anderson, S.I.: Silicon: the evolution of its use in biomaterials. Acta Biomater. 11, 17–26 (2015)

    Article  Google Scholar 

  23. Groh, D., Doehler, F., Brauer, D.S.: Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation. Acta Biomater. 10, 4465–4473 (2014)

    Article  Google Scholar 

  24. Beck Jr., G.R., Ha, S.-W., Camalier, C.E., Yamaguchi, M., Li, Y., Lee, J.-K., Weitzmann, M.N.: Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomed. Nanotechnol. Biol. Med. 8, 793–803 (2012)

    Article  Google Scholar 

  25. Vallet-Regi, M., Colilla, M., Izquierdo-Barba, I.: Bioactive mesoporous silicas as controlled delivery systems: application in bone tissue regeneration. J. Biomed. Nanotechnol. 4, 1–15 (2008)

    Google Scholar 

  26. Hum, J., Boccaccini, A.: Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J. Mater. Sci. Mater. Med. 23, 2317–2333 (2012)

    Article  Google Scholar 

  27. Vallet-Regi, M., Ramila, A., Del Real, R., Pérez-Pariente, J.: A new property of MCM-41: drug delivery system. Chem. Mater. 13, 308–311 (2001)

    Article  Google Scholar 

  28. Vallet-Regi, M., Izquierdo-Barba, I., Colilla, M.: Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 1400–1421 (2012)

    Article  Google Scholar 

  29. Yan, X., Yu, C., Zhou, X., Tang, J., Zhao, D.: Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. 43, 5980–5984 (2004)

    Article  Google Scholar 

  30. Hench, L.L.: The story of bioglass (R). J. Mater. Sci. Mater. Med. 17, 967–978 (2006)

    Article  Google Scholar 

  31. Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)

    Article  Google Scholar 

  32. Sepulveda, P., Jones, J.R., Hench, L.L.: Characterization of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J. Biomed. Mater. Res. 58, 734–740 (2001)

    Article  Google Scholar 

  33. Siqueira, R.L., Peitl, O., Zanotto, E.D.: Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater. Sci. Eng. C Mater. Biol. Appl. 31, 983–991 (2011)

    Article  Google Scholar 

  34. Letaief, N., Lucas-Girot, A., Oudadesse, H., Dorbez-Sridi, R.: New 92S6 mesoporous glass: influence of surfactant carbon chain length on the structure, pore morphology and bioactivity. Mater. Res. Bull. 60, 882–889 (2014)

    Article  Google Scholar 

  35. Yan, X.X., Yu, C.Z., Zhou, X.F., Tang, J.W., Zhao, D.Y.: Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. 43, 5980–5984 (2004)

    Article  Google Scholar 

  36. Lovelace, T.B., Mellonig, J.T., Meffert, R.M., Jones, A.A., Nummikoski, P.V., Cochran, D.L.: Clinical evaluation of bioactive glass in the treatment of periodontal osseous defects in humans. J. Periodontol. 69, 1027–1035 (1998)

    Article  Google Scholar 

  37. Mengel, R., Soffner, M., Flores-De-Jacoby, L.: Bioabsorbable membrane and bioactive glass in the treatment of intrabony defects in patients with generalized aggressive periodontitis: Results of a 12-month clinical and radiological study. J. Periodontol. 74, 899–908 (2003)

    Article  Google Scholar 

  38. Low, S.B., King, C.J., Krieger, J.: An evaluation of bioactive ceramic in the treatment of periodontal osseous defects. Int. J. Periodontics Restor. Dent. 17, 358–367 (1997)

    Google Scholar 

  39. Schopper, C., Ziya-Ghazvini, F., Goriwoda, W., Moser, D., Wanschitz, F., Spassova, E., Lagogiannis, G., Auterith, A., Ewers, R.: HA/TCP compounding of a porous CaP biomaterial improves bone formation and scaffold degradation—a long-term histological study. J. Biomed. Mater. Res. Part B Appl. Biomater. 74B, 458–467 (2005)

    Article  Google Scholar 

  40. Peters, F., Reif, D.: Functional materials for bone regeneration from beta-tricalcium phosphate. Materialwiss. Werkstofftech. 35, 203–207 (2004)

    Article  Google Scholar 

  41. Leong, K.F., Cheah, C.M., Chua, C.K.: Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24, 2363–2378 (2003)

    Article  Google Scholar 

  42. Sachlos, E., Czernuszka, J.T.: Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cells Mater. 5, 29–39 (2003). (discussion 39–40)

    Google Scholar 

  43. Liu, C.Z., Czernuszka, J.T.: Development of biodegradable scaffolds for tissue engineering: a perspective on emerging technology. Mater. Sci. Technol. 23, 379–391 (2007)

    Article  Google Scholar 

  44. Wu, C., Luo, Y., Cuniberti, G., Xiao, Y., Gelinsky, M.: Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 7, 2644–2650 (2011)

    Article  Google Scholar 

  45. Sepulveda, P., Jones, J.R., Hench, L.L.: Bioactive sol–gel foams for tissue repair. J. Biomed. Mater. Res. 59, 340–348 (2002)

    Article  Google Scholar 

  46. Jones, J.R., Lin, S., Yue, S., Lee, P.D., Hanna, J.V., Smith, M.E., Newport, R.J.: Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224, 1373–1387 (2010)

    Article  Google Scholar 

  47. Yun, H.-S., Kim, S.-E., Hyun, Y.-T., Heo, S.-J., Shin, J.-W.: Hierarchically mesoporous–macroporous bioactive glasses scaffolds for bone tissue regeneration. J. Biomed. Mater. Res. Part B Appl. Biomater. 87B, 374–380 (2008)

    Article  Google Scholar 

  48. Wu, C., Zhou, Y., Chang, J., Xiao, Y.: Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Acta Biomater. 9, 9159–9168 (2013)

    Article  Google Scholar 

  49. Huang, K., Cai, S., Xu, G., Ren, M., Wang, X., Zhang, R., Niu, S., Zhao, H.: Sol–gel derived mesoporous 58S bioactive glass coatings on AZ31 magnesium alloy and in vitro degradation behavior. Surf. Coat. Technol. 240, 137–144 (2014)

    Article  Google Scholar 

  50. Li, H., Chen, S., Wu, Y., Jiang, J., Ge, Y., Gao, K., Zhang, P., Wu, L.: Enhancement of the osseointegration of a polyethylene terephthalate artificial ligament graft in a bone tunnel using 58S bioglass. Int. Orthop. 36, 191–197 (2012)

    Article  Google Scholar 

  51. Monsalve, M., Lopez, E., Ageorges, H., Vargas, F.: Bioactivity and mechanical properties of bioactive glass coatings fabricated by flame spraying. Surf. Coat. Technol. 268, 142–146 (2015)

    Article  Google Scholar 

  52. Wang, X., Wen, C.: Corrosion protection of mesoporous bioactive glass coating on biodegradable magnesium. Appl. Surf. Sci. 303, 196–204 (2014)

    Article  Google Scholar 

  53. Fiorilli, S., Baino, F., Cauda, V., Crepaldi, M., Vitale-Brovarone, C., Demarchi, D., Onida, B.: Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 26, 1–2 (2015)

    Article  Google Scholar 

  54. Tan, F., Naciri, M., Al-Rubeai, M.: Osteoconductivity and growth factor production by MG63 osteoblastic cells on bioglass-coated orthopedic implants. Biotechnol. Bioeng. 108, 454–464 (2011)

    Article  Google Scholar 

  55. Xu, C.Y., Inai, R., Kotaki, M., Ramakrishna, S.: Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 10, 1160–1168 (2004)

    Article  Google Scholar 

  56. Clupper, D.C., Gough, J.E., Hall, M.M., Clare, A.G., LaCourse, W.C., Hench, L.L.: In vitro bioactivity of S520 glass fibers and initial assessment of osteoblast attachment. J. Biomed. Mater. Res., Part A 67A, 285–294 (2003)

    Article  Google Scholar 

  57. Hsu, F.-Y., Weng, R.-C., Lin, H.-M., Lin, Y.-H., Lu, M.-R., Yu, J.-L., Hsu, H.-W.: A biomimetic extracellular matrix composed of mesoporous bioactive glass as a bone graft material. Microporous Mesoporous Mater. 212, 56–65 (2015)

    Article  Google Scholar 

  58. Quintero, F., Pou, J., Comesana, R., Lusquinos, F., Riveiro, A., Mann, A.B., Hill, R.G., Wu, Z.Y., Jones, J.R.: Laser spinning of bioactive glass nanofibers. Adv. Funct. Mater. 19, 3084–3090 (2009)

    Article  Google Scholar 

  59. Walmsley, G.G., McArdle, A., Tevlin, R., Momeni, A., Atashroo, D., Hu, M.S., Feroze, A.H., Wong, V.W., Lorenz, P.H., Longaker, M.T., Wan, D.C.: Nanotechnology in bone tissue engineering. Nanomed. Nanotechnol. Biol. Med. 11, 1253–1263 (2015)

    Article  Google Scholar 

  60. Tran, N., Webster, T.J.: Nanotechnology for bone materials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 336–351 (2009)

    Article  Google Scholar 

  61. Yousefi, A.-M., Oudadesse, H., Akbarzadeh, R., Wers, E., Lucas-Girot, A.: Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering. Nanotechnol. Rev. 3, 527–552 (2014)

    Article  Google Scholar 

  62. Yang, Q., Sui, G., Shi, Y.Z., Duan, S., Bao, J.Q., Cai, Q., Yang, X.P.: Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles. Carbon 56, 288–295 (2013)

    Article  Google Scholar 

  63. Wang, H., Leeuwenburgh, S.C.G., Li, Y., Jansen, J.A.: The use of micro- and nanospheres as functional components for bone tissue regeneration. Tissue Eng. Part B Rev. 18, 24–39 (2012)

    Article  Google Scholar 

  64. Yang, L., Webster, T.J.: Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin. Drug Deliv. 6, 851–864 (2009)

    Article  Google Scholar 

  65. Wu, C., Fan, W., Chang, J.: Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. J. Mater. Chem. B 1, 2710 (2013)

    Article  Google Scholar 

  66. Liang, Q., Hu, Q., Miao, G., Yuan, B., Chen, X.: A facile synthesis of novel mesoporous bioactive glass nanoparticles with various morphologies and tunable mesostructure by sacrificial liquid template method. Mater. Lett. 148, 45–49 (2015)

    Article  Google Scholar 

  67. Wu, C., Chang, J.: A review of bioactive silicate ceramics. Biomed. Mater. 8, 032001 (2013)

    Article  Google Scholar 

  68. Clark, A.E., Pantano, C.G., Hench, L.L.: Auger spectroscopic analysis of bioglass corrosion films. J. Am. Ceram. Soc. 59, 37–39 (1976)

    Article  Google Scholar 

  69. Kasemo, B., Gold, J.: Implant surfaces and interface processes. Adv. Dent. Res. 13, 8–20 (1999)

    Article  Google Scholar 

  70. Jiang, P., Lin, H., Xing, R., Jiang, J., Qu, F.: Synthesis of multifunctional macroporous-mesoporous TiO2-bioglasses for bone tissue engineering. J. Sol-Gel. Sci. Technol. 61, 421–428 (2012)

    Article  Google Scholar 

  71. Lin, K., Liu, P., Wei, L., Zou, Z., Zhang, W., Qian, Y., Shen, Y., Chang, J.: Strontium substituted hydroxyapatite porous microspheres: surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release. Chem. Eng. J. 222, 49–59 (2013)

    Article  Google Scholar 

  72. Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., Xiao, Y.: Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34, 422–433 (2013)

    Article  Google Scholar 

  73. Wu, C., Zhou, Y., Fan, W., Han, P., Chang, J., Yuen, J., Zhang, M., Xiao, Y.: Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 33, 2076–2085 (2012)

    Article  Google Scholar 

  74. Zhao, S., Zhang, J., Zhu, M., Zhang, Y., Liu, Z., Tao, C., Zhu, Y., Zhang, C.: Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomater. 12, 270–280 (2015)

    Article  Google Scholar 

  75. Nielsen, S.P.: The biological role of strontium. Bone 35, 583–588 (2004)

    Article  Google Scholar 

  76. Isaac, J., Nohra, J., Lao, J., Jallot, E., Nedelec, J.-M., Berdal, A., Sautier, J.-M.: Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur. Cells Mater. 21, 130–143 (2011)

    Google Scholar 

  77. Wu, C., Chang, J.: Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J. Control. Release 193, 282–295 (2014)

    Article  Google Scholar 

  78. Choe, H., Narayanan, A.S., Gandhi, D.A., Weinberg, A., Marcus, R.E., Lee, Z., Bonomo, R.A., Greenfield, E.M.: Immunomodulatory peptide IDR-1018 decreases implant infection and preserves osseointegration. Clin. Orthop. Relat. Res. 473, 2898–2907 (2015)

    Article  Google Scholar 

  79. Balamurugan, A., Balossier, G., Laurent-Maquin, D., Pina, S., Rebelo, A.H.S., Faure, J., Ferreira, J.M.F.: An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent. Mater. 24, 1343–1351 (2008)

    Article  Google Scholar 

  80. Rabiee, S.M., Nazparvar, N., Azizian, M., Vashaee, D., Tayebi, L.: Effect of ion substitution on properties of bioactive glasses: a review. Ceram. Int. 41, 7241–7251 (2015)

    Article  Google Scholar 

  81. Yao, Q., Nooeaid, P., Detsch, R., Roether, J.A., Dong, Y., Goudouri, O.-M., Schubert, D.W., Boccaccini, A.R.: Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering. J. Biomed. Mater. Res. Part A (2014). doi:10.1002/jbm.a.35125

    Google Scholar 

  82. Helen, W., Gough, J.E.: Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass® composite foam scaffolds in vitro. Acta Biomater. 4, 230–243 (2008)

    Article  Google Scholar 

  83. Zeimaran, E., Pourshahrestani, S., Djordjevic, I., Pingguan-Murphy, B., Kadri, N.A., Towler, M.R.: Bioactive glass reinforced elastomer composites for skeletal regeneration: a review. Mater. Sci. Eng. C 53, 175–188 (2015)

    Article  Google Scholar 

  84. Moritz, M., Geszke-Moritz, M.: Mesoporous materials as multifunctional tools in biosciences: principles and applications. Mat. Sci. Eng. C Mater. Biol. Appl. 49, 114–151 (2015)

    Article  Google Scholar 

  85. Bretcanu, O., Boccaccini, A.R., Salih, V.: Poly-dl-lactic acid coated Bioglass® scaffolds: toughening effects and osteosarcoma cell proliferation. J. Mater. Sci. 47, 5661–5672 (2012)

    Article  Google Scholar 

  86. Wu, J., Xue, K., Li, H., Sun, J., Liu, K.: Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS ONE 8, e71563 (2013)

    Article  Google Scholar 

  87. Yao, Q., Nooeaid, P., Roether, J.A., Dong, Y., Zhang, Q., Boccaccini, A.R.: Bioglass®—based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery. Ceram. Int. 39, 7517–7522 (2013)

    Article  Google Scholar 

  88. Bellucci, D., Sola, A., Anesi, A., Salvatori, R., Chiarini, L., Cannillo, V.: Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation. Mater. Sci. Eng. C 51, 196–205 (2015)

    Article  Google Scholar 

  89. Chen, Y., Chen, H., Shi, J.: In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 25, 3144–3176 (2013)

    Article  Google Scholar 

  90. Zhao, Y.N., Trewyn, B.G., Slowing, I.I., Lin, V.S.Y.: Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J. Am. Chem. Soc. 131, 8398–8400 (2009)

    Article  Google Scholar 

  91. Slowing, I.I., Vivero-Escoto, J.L., Wu, C.W., Lin, V.S.Y.: Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60, 1278–1288 (2008)

    Article  Google Scholar 

  92. Neumann, A., Christel, A., Kasper, C., Behrens, P.: BMP2-loaded nanoporous silica nanoparticles promote osteogenic differentiation of human mesenchymal stem cells. RSC Adv. 3, 24222 (2013)

    Article  Google Scholar 

  93. Zhu, Y., Kaskel, S.: Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Microporous Mesoporous Mater. 118, 176–182 (2009)

    Article  Google Scholar 

  94. Ding, H., Gao, Y.-S., Wang, Y., Hu, C., Sun, Y., Zhang, C.: Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem Cells Dev. 23, 990–1000 (2014)

    Article  Google Scholar 

  95. Weidemann, A., Johnson, R.S.: Biology of HIF-1 alpha. Cell Death Differ. 15, 621–627 (2008)

    Article  Google Scholar 

  96. Kang, M.S., Kim, J.-H., Singh, R.K., Jang, J.-H., Kim, H.-W.: Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. Acta Biomater. 16, 103–116 (2015)

    Article  Google Scholar 

  97. Izquierdo-Barba, I., Colilla, M., Vallet-Regí, M.: Nanostructured mesoporous silicas for bone tissue regeneration. J. Nanomater. 2008, 1–14 (2008)

    Article  Google Scholar 

  98. Matsuura, N., Gorelikov, I., Williams, R., Wan, K., Zhu, S., Booth, J., Burns, P., Hynynen, K., Rowlands, J.A.: Nanoparticle-tagged perfluorocarbon droplets for medical imaging. In: Shastri, V.P., Lendlein, A., Liu, L., Mikos, A., Mitragotri, S. (eds.) Advances in Material Design for Regenerative Medicine, Drug Delivery and Targeting/Imaging, pp 87–92 (2009)

    Google Scholar 

  99. Kim, Y.-T., Caldwell, J.-M., Bellamkonda, R.V.: Nanoparticle-mediated local delivery of methylprednisolone after spinal cord injury. Biomaterials 30, 2582–2590 (2009)

    Article  Google Scholar 

  100. Cejudo-Guillen, M., Ramiro-Gutierrez, M.L., Labrador-Garrido, A., Diaz-Cuenca, A., Pozo, D.: Nanoporous silica microparticle interaction with toll-like receptor agonists in macrophages. Acta Biomater. 8, 4295–4303 (2012)

    Article  Google Scholar 

  101. Tautzenberger, A., Kovtun, A.: Ignatius Nanoparticles and their potential for application in bone. Int. J. Nanomed. 7, 4545 (2012). doi:10.2147/ijn.s34127

    Article  Google Scholar 

  102. Ma, Z., Ji, H., Hu, X., Teng, Y., Zhao, G., Mo, L., Zhao, X., Chen, W., Qiu, J., Zhang, M.: Investigation of bioactivity and cell effects of nano-porous sol–gel derived bioactive glass film. Appl. Surf. Sci. 284, 738–744 (2013)

    Article  Google Scholar 

  103. Li, Y., Li, B., Xu, G., Ahmad, Z., Ren, Z., Dong, Y., Li, X., Weng, W., Han, G.: A feasible approach toward bioactive glass nanofibers with tunable protein release kinetics for bone scaffolds. Colloids Surf., B 122, 785–791 (2014)

    Article  Google Scholar 

  104. Bi, L., Jung, S., Day, D., Neidig, K., Dusevich, V., Eick, D., Bonewald, L.: Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J. Biomed. Mater. Res. Part A 100, 3267–3275 (2012)

    Article  Google Scholar 

  105. Zhang, Y., Wei, L., Chang, J., Miron, R.J., Shi, B., Yi, S., Wu, C.: Strontium-incorporated mesoporous bioactive glass scaffolds stimulating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects. J. Mater. Chem. B 1, 5711 (2013)

    Article  Google Scholar 

  106. Miguez-Pacheco, V., Hench, L.L., Boccaccini, A.R.: Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 13, 1–15 (2015)

    Article  Google Scholar 

  107. Suzuki, O., Bishop, A.T., Sunagawa, T., Katsube, K., Friedrich, P.F.: VEGF-promoted surgical angiogenesis in necrotic bone. Microsurgery 24, 85–91 (2004)

    Article  Google Scholar 

  108. Day, R.M.: Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 11, 768–777 (2005)

    Article  Google Scholar 

  109. Peltola, T., Jokinen, M., Rahiala, H., Levanen, E., Rosenholm, J.B., Kangasniemi, I., Yli-Urpo, A.: Calcium phosphate formation on porous sol–gel-derived SiO2 and CaO–P2O5–SiO2 substrates in vitro. J. Biomed. Mater. Res. 44, 12–21 (1999)

    Article  Google Scholar 

  110. Dai, C., Yuan, Y., Liu, C., Wei, J., Hong, H., Li, X., Pan, X.: Degradable, antibacterial silver exchanged mesoporous silica spheres for hemorrhage control. Biomaterials 30, 5364–5375 (2009)

    Article  Google Scholar 

  111. Lin, C., Mao, C., Zhang, J., Li, Y., Chen, X.: Healing effect of bioactive glass ointment on full-thickness skin wounds. Biomed. Mater. 7, 045017 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Chang or Chengtie Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shi, M., Chang, J., Wu, C. (2016). Bioactive Glasses: Advancing from Micro to Nano and Its Potential Application. In: Marchi, J. (eds) Biocompatible Glasses. Advanced Structured Materials, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-44249-5_6

Download citation

Publish with us

Policies and ethics