Skip to main content

Leveraging Structural Hierarchy for Scalable Network Comparison

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9827))

Included in the following conference series:

  • 877 Accesses

Abstract

K-core decomposition is a popular method that segments a network revealing the underlying hierarchy. We explore the propensity of this decomposition method for structural discrimination among networks by extracting features from each level of the hierarchy. We propose a novel algorithm for Network Comparison using k-core Decomposition (NCKD). The method is effective, efficient and scalable, with computational complexity of \(O(|{\mathcal E}|)\), where \({\mathcal E}\) is the set of edges in the network. The low computational complexity of the method makes it attractive for scalable network comparison.

NCKD algorithm decomposes networks and extracts features from the resulting shells. Jensen-Shannon distance between extracted features quantifies structural differences between networks. We establish that probability distributions of coreness and intra/inter-shell edges are capable of characterizing different genres of networks and capturing finer structural differences between networks of the same genre. We experiment with synthetic and real-life networks up to eight million edges on a single PC. Comparison with two recent state-of-the-art network comparison methods affirms that NCKD outperforms in terms of effectiveness and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use terms network/graph, node/vertex, and edge/link interchangeably.

  2. 2.

    hclust and cutree functions of stats package in R were used for agglomerative clustering and to cut dendrogram by specifying known number of classes.

  3. 3.

    http://snap.stanford.edu/data.

References

  1. Albert, R., lászló Barabsi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvarez-Hamelin, J.I., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. Adv. Neural Inf. Process. Syst. 18, 41–50 (2006)

    Google Scholar 

  3. Banerjee, A.: Structural distance and evolutionary relationship of networks. Biosystems 107(3), 186–196 (2012)

    Article  Google Scholar 

  4. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. CoRR cs.DS/0310049 (2003)

    Google Scholar 

  5. Baur, M., Gaertler, M., Grke, R., Krug, M.: Generating graphs with predefined k-core structure. Technical report, DELIS - Dynamically Evolving, Large-Scale Information Systems (2007)

    Google Scholar 

  6. Berlingerio, M., Koutra, D., Eliassi-Rad, T., Faloutsos, C.: Network similarity via multiple social theories. In: Proceedings of International Conference on ASONAM, pp. 1439–1440. IEEE (2013)

    Google Scholar 

  7. Dorogovtsev, S., Goltsev, A., Mendes, J.: Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275 (2008)

    Article  Google Scholar 

  8. Erdös, P., Rényi, A.: On random graphs I. Publicationes Math. 6, 290–297 (1959). Debrecen

    MATH  Google Scholar 

  9. Faloutsos, C., Koutra, D., Vogelstein, J.T.: DELTACON: a principled massive-graph similarity function. In: Proceedings of the 13th SIAM International Conference on Data Mining, pp. 162–170 (2013)

    Google Scholar 

  10. Faust, K.: Comparing social networks: size, density and local structure. Adv. Methodol. Stat. 3(2), 185–216 (2006)

    Google Scholar 

  11. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)

    Article  MathSciNet  Google Scholar 

  12. Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: Evaluating cooperation in communities with the k-core structure. In: Proceedings of International Conference on ASONAM, pp. 87–93. IEEE (2011)

    Google Scholar 

  13. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  14. Karwa, V., Pelsmajer, M.J., Petrovic, S., Stasi, D., Wilburne, D.: Statistical models for cores decomposition of an undirected random graph. CoRR abs/1410.7357 (2014)

    Google Scholar 

  15. Kollias, G., Mohammadi, S., Grama, A.: Network similarity decomposition (NSD): a fast and scalable approach to network alignment. Technical report. Purdue University (2011)

    Google Scholar 

  16. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 2 (2007)

    Article  Google Scholar 

  17. Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, S., Kang, J., Gong, W., Towsley, D.: Complex network comparison using random walks. In: Proceedings of 23rd International WWW Conference, pp. 727–730 (2014)

    Google Scholar 

  19. Macindoe, O., Richards, W.: Graph comparison using fine structure analysis. In: Proceedings of the 2nd IEEE International Conference on Social Computing, pp. 193–200 (2010)

    Google Scholar 

  20. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  21. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: Proceedings of the 18th ICDE, pp. 117–128 (2002)

    Google Scholar 

  22. Montresor, A., Pellegrini, F.D., Miorandi, D.: Distributed k-core decomposition. IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2013)

    Article  Google Scholar 

  23. Peng, C., Kolda, T.G., Pinar, A.: Accelerating community detection by using k-core subgraphs. CoRR abs/1403.2226 (2014)

    Google Scholar 

  24. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5, 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  25. Wang, J., Cheng, J.: Truss decomposition in massive networks. Proc. VLDB Endowment 5(9), 812–823 (2012)

    Article  Google Scholar 

  26. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanjit Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Saxena, R., Kaur, S., Dash, D., Bhatnagar, V. (2016). Leveraging Structural Hierarchy for Scalable Network Comparison. In: Hartmann, S., Ma, H. (eds) Database and Expert Systems Applications. DEXA 2016. Lecture Notes in Computer Science(), vol 9827. Springer, Cham. https://doi.org/10.1007/978-3-319-44403-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44403-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44402-4

  • Online ISBN: 978-3-319-44403-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics