Skip to main content

Computing and Visualizing Time-Varying Merge Trees for High-Dimensional Data

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization IV (TopoInVis 2015)

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Included in the following conference series:

Abstract

We introduce a new method that identifies and tracks features in arbitrary dimensions using the merge tree—a structure for identifying topological features based on thresholding in scalar fields. This method analyzes the evolution of features of the function by tracking changes in the merge tree and relates features by matching subtrees between consecutive time steps. Using the time-varying merge tree, we present a structural visualization of the changing function that illustrates both features and their temporal evolution. We demonstrate the utility of our approach by applying it to temporal cluster analysis of high-dimensional point clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bache, K., Lichman, M.: UCI machine learning repository. http://archive.ics.uci.edu/ml (2013)

  2. Bhaniramka, P., Wenger, R., Crawfis, R.: Isosurface construction in any dimension using convex hulls. IEEE Trans. Vis. Comput. Graph. 10(2), 130–141 (2004)

    Article  Google Scholar 

  3. Bremer, P., Bringa, E., Duchaineau, M., Gyulassy, A., Laney, D., Mascarenhas, A., Pascucci, V.: Topological feature extraction and tracking. J. Phys. Conf. Ser. 78(1), 012007 (2007)

    Article  Google Scholar 

  4. Bremer, P.T., Weber, G.H., Pascucci, V., Day, M., Bell, J.B.: Analyzing and tracking burning structures in lean premixed hydrogen flames. IEEE Trans. Vis. Comput. Graph. 16(2), 248–260 (2010)

    Article  Google Scholar 

  5. Bremer, P.T., Weber, G.H., Tierny, J., Pascucci, V., Day, M., Bell, J.: Interactive exploration and analysis of large-scale simulations using topology-based data segmentation. IEEE Trans. Vis. Comput. Graph. 17(9), 1307–1324 (2011)

    Article  Google Scholar 

  6. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. 24(2), 75–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces using local geometric measures. In: Proceedings of IEEE Visualization, pp. 497–504. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  8. Chen, F., Obermaier, H., Hagen, H., Hamann, B., Tierny, J., Pascucci, V.: Topology analysis of time-dependent multi-fluid data using the Reeb graph. Comput. Aided Geom. Des. 30(6), 557–566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear time. In: Proceedings of Symposium on Computational Geometry, pp. 119–126. Association for Computing Machinery, New York (2006)

    Google Scholar 

  10. Edelsbrunner, H., Harer, J.: Jacobi sets of multiple Morse functions. In: Cucker, F., DeVore, R., Olver, P., Suli, E. (eds.) Foundations of Computational Mathematics. Minneapolis, pp. 37–57. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  11. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9(1), 66–104 (1990)

    Article  MATH  Google Scholar 

  12. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28(4), 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Edelsbrunner, H., Harer, J., Mascarenhas, A., Pascucci, V., Snoeyink, J.: Time-varying Reeb graphs for continuous space-time data. Comput. Geom. 41(3), 149–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press Professional, Inc., San Diego, CA (1990)

    MATH  Google Scholar 

  15. Harvey, W., Wang, Y.: Topological landscape ensembles for visualization of scalar-valued functions. Comput. Graph. Forum 29(3), 993–1002 (2010)

    Article  Google Scholar 

  16. Ji, G., Shen, H.W.: Feature tracking using Earth Mover’s distance and global optimization. In: Proceedings of Pacific Graphics. Poster (2006)

    Google Scholar 

  17. Keller, P., Bertram, M.: Modeling and visualization of time-varying topology transitions guided by hyper Reeb graph structures. In: Proceedings of IASTED International Conference on Computer Graphics and Imaging, pp. 15–25 (2007)

    Google Scholar 

  18. Mascarenhas, A., Snoeyink, J.: Implementing time-varying contour trees. In: Proceedings of Symposium on Computational Geometry, pp. 370–371. Association for Computing Machinery, New York (2005)

    Google Scholar 

  19. Mascarenhas, A., Snoeyink, J.: Isocontour based visualization of time-varying scalar fields. In: Möller, T., Hamann, B., Russell, R.D. (eds.) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, pp. 41–68. Springer, Berlin (2009)

    Chapter  Google Scholar 

  20. Oesterling, P., Heine, C., Jänicke, H., Scheuermann, G., Heyer, G.: Visualization of high-dimensional point clouds using their density distribution’s topology. IEEE Trans. Vis. Comput. Graph. 17(11), 1547–1559 (2011)

    Article  Google Scholar 

  21. Oesterling, P., Heine, C., Weber, G.H., Scheuermann, G.: Visualizing nD point clouds as topological landscape profiles to guide local data analysis. IEEE Trans. Vis. Comput. Graph. 19(3), 514–526 (2013)

    Article  Google Scholar 

  22. Reinders, F., Post, F.H., Spoelder, H.J.: Visualization of time-dependent data with feature tracking and event detection. Vis. Comput. 17(1), 55–71 (2001)

    Article  MATH  Google Scholar 

  23. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  24. Sohn, B.S., Bajaj, C.: Time-varying contour topology. IEEE Trans. Vis. Comput. Graph. 12(1), 14–25 (2006)

    Article  Google Scholar 

  25. Szymczak, A.: Subdomain aware contour trees and contour evolution in time-dependent scalar fields. In: Shape Modeling and Applications, pp. 136–144. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  26. Turkay, C., Parulek, J., Reuter, N., Hauser, H.: Interactive visual analysis of temporal cluster structures. Comput. Graph. Forum 30(3), 711–720 (2011)

    Article  Google Scholar 

  27. Weber, G.H., Bremer, P.T., Pascucci, V.: Topological landscapes: a terrain metaphor for scientific data. IEEE Trans. Vis. Comput. Graph. 13(6), 1416–1423 (2007)

    Article  Google Scholar 

  28. Weber, G.H., Bremer, P.T., Day, M., Bell, J., Pascucci, V.: Feature tracking using Reeb graphs. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.) Topological Methods in Data Analysis and Visualization, pp. 241–253. Springer, New York (2011)

    Chapter  Google Scholar 

  29. Widanagamaachchi, W., Christensen, C., Pascucci, V., Bremer, P.T.: Interactive exploration of large-scale time-varying data using dynamic tracking graphs. In: IEEE Symposium on Large Data Analysis and Visualization, pp. 9–17 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors thank anonymous reviewers for valuable comments and assistance in revising the paper. This work was supported by a grant from the German Research Foundation (DFG) within the strategic research initiative on Scalable Visual Analytics (SPP 1335). This work was supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. DOE under Contract No. DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory) through the grant “Topology-based Visualization and Analysis of High-dimensional Data and Time-varying Data at the Extreme Scale”, program manager Lucy Nowell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Oesterling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Oesterling, P., Heine, C., Weber, G.H., Morozov, D., Scheuermann, G. (2017). Computing and Visualizing Time-Varying Merge Trees for High-Dimensional Data. In: Carr, H., Garth, C., Weinkauf, T. (eds) Topological Methods in Data Analysis and Visualization IV. TopoInVis 2015. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-44684-4_5

Download citation

Publish with us

Policies and ethics