Skip to main content

Pre-clinical and Clinical Management of Osteochondral Lesions

  • Chapter
  • First Online:
Regenerative Strategies for the Treatment of Knee Joint Disabilities

Abstract

The majority of osteochondral (OC) lesions occur after injury or trauma of both bone and the overlying cartilage, and symptoms are pain and disability, leading to the risk of inducing osteoarthritis. These lesions are currently repaired by non-surgical and surgical methods or by advanced tissue engineering strategies, which require a proof of efficacy and safety for regulatory approval for human application. Pre-clinical studies using animal models have been the support of OC repair and regeneration with successful clinical outcomes. Small animal models as mice and rabbits, and large animal models as sheep, goats and horses, have been most commonly used according with the outcome goals. Small animals are recommended as a proof of concept, while large animals are endorsed for truly translational research in order to get the regulatory approval for clinical use in humans. An up-to-date of the in vivo studies using different animal models and ongoing clinical trials for the repair and regeneration of OC lesions are presented. Commercialised products for OC repair are also indicated.

Sandra Pina and Viviana Ribeiro have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swieszkowski W, Tuan BHS, Kurzydlowski KJ, Hutmacher DW (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24(5):489–495. doi:10.1016/j.bioeng.2007.07.014

    Article  Google Scholar 

  2. Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, Kon E (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sport Traumatol Arthrosc 20(6):1182–1191. doi:10.1007/s00167-011-1655-1

    Article  Google Scholar 

  3. Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sport Med 24(1):1–12. doi:10.1016/j.csm.2004.08.007

    Article  Google Scholar 

  4. Liu M, Yu X, Huang FG, Cen SQ, Zhong G, Xiang Z (2013) Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics 36(11):868–873. doi:10.3928/01477447-20131021-10

    Article  Google Scholar 

  5. Chu CR, Coutts RD, Yoshioka M, Harwood FL, Monosov AZ, Amiel D (1995) Articular cartilage repair using allogeneic perichondrocyteseeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29(9):1147–1154

    Article  Google Scholar 

  6. Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751

    Article  Google Scholar 

  7. Yan LP, Wang YJ, Ren L, Wu G, Caridade SG, Fan JB, Wang LY, Ji PH, Oliveira JM, Oliveira JT (2010) Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res Part A 95(2):465–475

    Article  Google Scholar 

  8. Yan L-P, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL (2012) Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 8(1):289–301

    Article  Google Scholar 

  9. Shimomura K, Moriguchi Y, Murawski CD, Yoshikawa H, Nakamura N (2014) Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques. Tissue Eng Part B Rev 20(5):468–476

    Article  Google Scholar 

  10. Moyer R, Ratneswaran A, Beier F, Birmingham T (2014) Osteoarthritis year in review 2014: mechanics–basic and clinical studies in osteoarthritis. Osteoarth Cartil 22(12):1989–2002

    Article  Google Scholar 

  11. Csaki C, Schneider P, Shakibaei M (2008) Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat-Anatomischer Anzeiger 190(5):395–412

    Article  Google Scholar 

  12. Zhang W, Moskowitz R, Nuki G, Abramson S, Altman R, Arden N, Bierma-Zeinstra S, Brandt K, Croft P, Doherty M (2007) OARSI recommendations for the management of hip and knee osteoarthritis. Part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarth Cartil 15(9):981–1000

    Article  Google Scholar 

  13. Zhang W, Moskowitz R, Nuki G, Abramson S, Altman R, Arden N, Bierma-Zeinstra S, Brandt K, Croft P, Doherty M (2008) OARSI recommendations for the management of hip and knee osteoarthritis. Part II: OARSI evidence-based, expert consensus guidelines. Osteoarth Cartil 16(2):137–162

    Article  Google Scholar 

  14. Zhang W, Nuki G, Moskowitz R, Abramson S, Altman R, Arden N, Bierma-Zeinstra S, Brandt K, Croft P, Doherty M (2010) OARSI recommendations for the management of hip and knee osteoarthritis. Part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarth Cartil 18(4):476–499

    Article  Google Scholar 

  15. Redman S, Oldfield S, Archer C (2005) Current strategies for articular cartilage repair. Eur Cell Mater 9(23–32):23–32

    Google Scholar 

  16. Shimomura K, Ando W, Tateishi K, Nansai R, Fujie H, Hart DA, Kohda H, Kita K, Kanamoto T, Mae T (2010) The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials 31(31):8004–8011

    Article  Google Scholar 

  17. Xing L, Jiang Y, Gui J, Lu Y, Gao F, Xu Y, Xu Y (2013) Microfracture combined with osteochondral paste implantation was more effective than microfracture alone for full-thickness cartilage repair. Knee Surg Sports Traumatol Arthrosc 21(8):1770–1776

    Article  Google Scholar 

  18. Kim YS, Park EH, Lee HJ, Koh YG, Lee JW (2012) Clinical comparison of the osteochondral autograft transfer system and subchondral drilling in osteochondral defects of the first metatarsal head. Am J Sports Med 40(8):1824–1833

    Article  Google Scholar 

  19. De Girolamo L, Quaglia A, Bait C, Cervellin M, Prospero E, Volpi P (2012) Modified autologous matrix-induced chondrogenesis (AMIC) for the treatment of a large osteochondral defect in a varus knee: a case report. Knee Surg Sports Traumatol Arthrosc 20(11):2287–2290

    Article  Google Scholar 

  20. Miska M, Wiewiorski M, Valderrabano V (2012) Reconstruction of a large osteochondral lesion of the distal tibia with an iliac crest graft and autologous matrix-induced chondrogenesis (AMIC): a case report. J Foot Ankle Surg 51(5):680–683

    Article  Google Scholar 

  21. Christensen BB, Foldager CB, Hansen OM, Kristiansen AA, Le DQS, Nielsen AD, Nygaard JV, Bünger CE, Lind M (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc 20(6):1192–1204

    Article  Google Scholar 

  22. Jackson RW, Dieterichs C (2003) The results of arthroscopic lavage and debridement of osteoarthritic knees based on the severity of degeneration. Arthrosc J Arthrosc Relat Surg 19(1):13–20

    Article  Google Scholar 

  23. Shannon F, Devitt A, Poynton A, Fitzpatrick P, Walsh M (2001) Short-term benefit of arthroscopic washout in degenerative arthritis of the knee. Int Orthop 25(4):242–245

    Article  Google Scholar 

  24. Hangody L, Kish G, Karpati Z, Szerb I, Udvarhelyi I (1997) Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects A preliminary report. Knee Surg Sports Traumatol Arthrosc 5(4):262–267

    Article  Google Scholar 

  25. Minas T, Peterson L (2012) Autologous chondrocyte transplantation. Oper Tech Sports Med 20(1):72–86

    Article  Google Scholar 

  26. Getgood AM, Kew SJ, Brooks R, Aberman H, Simon T, Lynn AK, Rushton N (2012) Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen–glycosaminoglycan biopolymer in a caprine model. Knee 19(4):422–430

    Article  Google Scholar 

  27. Siclari A, Mascaro G, Gentili C, Cancedda R, Boux E (2012) A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin Orthop Relat Res® 470(3):910–919

    Article  Google Scholar 

  28. Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765. doi:10.1016/j.jbiomech.2006.03.008

    Article  Google Scholar 

  29. Sotoudeh A, Jahanshahi A, Takhtfooladi MA, Bazazan A, Ganjali A, Harati MP (2013) Study on nano-structured hydroxyapatite/zirconia stabilized yttria on healing of articular cartilage defect in rabbit. Acta Cir Bras 28(5):340–345

    Article  Google Scholar 

  30. Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196

    Article  Google Scholar 

  31. Nejadnik H, Daldrup-Link HE (2012) Engineering stem cells for treatment of osteochondral defects. Skeletal Radiol 41(1):1–4

    Article  Google Scholar 

  32. Keeney M, Pandit A (2009) The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15(1):55–73

    Article  Google Scholar 

  33. Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Controll Release 134(2):81–90

    Article  Google Scholar 

  34. Im GI, Lee JH (2010) Repair of osteochondral defects with adipose stem cells and a dual growth factor-releasing scaffold in rabbits. J Biomed Mater Res B Appl Biomater 92(2):552–560

    Google Scholar 

  35. Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A 17(21–22):2845–2855

    Article  Google Scholar 

  36. Schütz K, Despang F, Lode A, Gelinsky M (2016) Cell‐laden biphasic scaffolds with anisotropic structure for the regeneration of osteochondral tissue. J Tissue Eng Regen Med 10(5):404–417

    Google Scholar 

  37. Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010) Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A 92A(3):1078–1093. doi:10.1002/Jbm.A.32387

    Google Scholar 

  38. Grayson WL, Chao PHG, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26(4):181–189. doi:10.1016/j.tibtech.2007.12.009

    Article  Google Scholar 

  39. Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: Current strategies and challenges. Biotechnol Adv 31(5):706–721. doi:10.1016/j.biotechadv.2012.11.004

    Article  Google Scholar 

  40. Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16(10):2247–2270. doi:10.1111/j.1582-4934.2012.01571.x

    Article  Google Scholar 

  41. Goldstein SA (2002) Tissue engineering—functional assessment and clinical outcome. Ann N Y Acad Sci 961:183–192

    Article  Google Scholar 

  42. Sosio C, Di Giancamillo A, Deponti D, Gervaso F, Scalera F, Melato M, Campagnol M, Boschetti F, Nonis A, Domeneghini C, Sannino A, Peretti GM (2015) Osteochondral repair by a novel interconnecting collagen-hydroxyapatite substitute: a large-animal study. (1937-335X (Electronic))

    Google Scholar 

  43. J-P Seo, Tanabe T, Tsuzuki N, Haneda S, Yamada K, Furuoka H, Tabata Y, Sasaki N (2013) Effects of bilayer gelatin/β-tricalcium phosphate sponges loaded with mesenchymal stem cells, chondrocytes, bone morphogenetic protein-2, and platelet rich plasma on osteochondral defects of the talus in horses. Res Vet Sci 95(3):1210–1216. doi:10.1016/j.rvsc.2013.08.016

    Article  Google Scholar 

  44. Jeon JE, Vaquette C, Theodoropoulos C, Klein TJ, Hutmacher DW (2014) Multiphasic construct studied in an ectopic osteochondral defect model, vol 11. vol 95. doi:10.1098/rsif.2014.0184

  45. Dresing I, Zeiter S, Auer J, Alini M, Eglin D (2014) Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model. J Mater Sci Mater Med 25(7):1691–1700. doi:10.1007/s10856-014-5192-6

    Article  Google Scholar 

  46. Jang KM, Lee JH, Park CM, Song HR, Wang JH (2014) Xenotransplantation of human mesenchymal stem cells for repair of osteochondral defects in rabbits using osteochondral biphasic composite constructs. Knee Surg Sport Traumatol Arthrosc 22(6):1434–1444. doi:10.1007/s00167-013-2426-y

    Article  Google Scholar 

  47. Zhang WJ, Lian Q, Li DC, Wang KZ, Hao DJ, Bian WG, He JK, Jin ZM (2014) Cartilage repair and subchondral bone migration using 3D printing osteochondral composites: a one-year-period study in rabbit trochlea. Biomed Res Int. doi:10.1155/2014/746138

    Google Scholar 

  48. Zhang SF, Chen LK, Jiang YZ, Cai YZ, Xu GW, Tong T, Zhang W, Wang LL, Ji JF, Shi PH, Ouyang HW (2013) Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 9(7):7236–7247. doi:10.1016/j.actbio.2013.04.003

    Article  Google Scholar 

  49. Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2013) Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release 168(2):166–178. doi:10.1016/j.jconrel.2013.03.013

    Article  Google Scholar 

  50. Zhang W, Chen JL, Tao JD, Hu CC, Chen LK, Zhao HS, Xu GW, Heng BC, Ouyang HW (2013) The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials 34(25):6046–6057. doi:10.1016/j.biomaterials.2013.04.055

    Article  Google Scholar 

  51. Chen JN, Chen HA, Li P, Diao HJ, Zhu SY, Dong L, Wang R, Guo T, Zhao JN, Zhang JF (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32(21):4793–4805. doi:10.1016/j.biomaterials.2011.03.041

    Article  Google Scholar 

  52. Kon E, Filardo G, Robinson D, Eisman JA, Levy A, Zaslav K, Shani J, Altschuler N (2015) Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. (1433-7347 (Electronic))

    Google Scholar 

  53. Fonseca C, Caminal M, Peris D, Barrachina J, Fabregas PJ, Garcia F, Cairo JJ, Godia F, Pla A, Vives J (2014) An arthroscopic approach for the treatment of osteochondral focal defects with cell-free and cell-loaded PLGA scaffolds in sheep. Cytotechnology 66(2):345–354. doi:10.1007/s10616-013-9581-3

    Article  Google Scholar 

  54. Schleicher I, Lips KS, Sommer U, Schappat I, Martin AP, Szalay G, Hartmann S, Schnettler R (2013) Biphasic scaffolds for repair of deep osteochondral defects in a sheep model. J Surg Res 183(1):184–192

    Article  Google Scholar 

  55. Bernstein A, Niemeyer P, Salzmann G, Südkamp NP, Hube R, Klehm J, Menzel M, von Eisenhart-Rothe R, Bohner M, Görz L, Mayr HO (2013) Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results. Acta Biomater 9(7):7490–7505. doi:10.1016/j.actbio.2013.03.021

    Article  Google Scholar 

  56. Gotterbarm T, Breusch SJ, Jung M, Streich N, Wiltfang J, Berardi Vilei S, Richter W, Nitsche T (2014) Complete subchondral bone defect regeneration with a tricalcium phosphate collagen implant and osteoinductive growth factors: a randomized controlled study in Gottingen minipigs. (1552-4981 (Electronic))

    Google Scholar 

  57. Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41(7):693–701. doi:10.1016/j.injury.2009.11.014

    Article  Google Scholar 

  58. Williams RJ, Gamradt SC (2008) Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect 57:563–571

    Google Scholar 

  59. Melton JTK, Wilson AJ, Chapman-Sheath P, Cossey AJ (2010) TruFit CB® bone plug: chondral repair, scaffold design, surgical technique and early experiences. Expert Rev Med Devices 7(3):333–341. doi:10.1586/erd.10.15

    Article  Google Scholar 

  60. Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41:693–701

    Article  Google Scholar 

  61. Ostrovsky G (2010) Bioresorbable, acellular, biphasic scaffold gets EU approval for knee cartilage repair. medGadget. Accessed 25 Nov 2014

    Google Scholar 

  62. Gomoll AH (2013) Osteochondral allograft transplantation using the chondrofix implant. Oper Tech Sports Med 21(2):90–94. doi:10.1053/j.otsm.2013.03.002

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to this work has received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) under Grant Agreement No REGPOT-CT2012-316331-POLARIS, and from QREN (ON.2—NORTE-01-0124-FEDER-000016) cofinanced by North Portugal Regional Operational Program (ON.2—O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). Thanks are also due to the Portuguese Foundation for Science and Technology (FCT) and FSE/POCH (Fundo Social Europeu através do Programa Operacional do Capital Humano), PD/59/2013, for the project PEst-C/SAU/LA0026/201, for the fellowship grants of  Sandra Pina (SFRH/BPD/108763/2015) and Viviana Ribeiro (PD/BD/113806/2015), and for the distinction attributed to J.M. Oliveira under the Investigator FCT program (IF/00423/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Pina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pina, S., Ribeiro, V., Oliveira, J.M., Reis, R.L. (2017). Pre-clinical and Clinical Management of Osteochondral Lesions. In: Oliveira, J., Reis, R. (eds) Regenerative Strategies for the Treatment of Knee Joint Disabilities. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-44785-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44785-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44783-4

  • Online ISBN: 978-3-319-44785-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics