Skip to main content

AR-based Modeling of 3D Objects in Multi-user Mobile Environments

  • Conference paper
  • First Online:
Collaboration and Technology (CRIWG 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9848))

Included in the following conference series:

Abstract

In animations and video games, Digital Elevation Maps (DEMs) are commonly used to model geometric assets, e.g., terrains on a landscape. When a DEM is edited by a group of collaborators, they are constrained to access the elevation data from their PC following a turn-taking policy, since most of the applications are essentially single-user. Furthermore, the DEM is visualized in 2D, causing some degree of confusion to new users when imagining the DEM shape in 3D. In this paper, we propose a novel approach to the collaborative modeling of DEMs on mobile devices. Our approach uses Augmented Reality (AR) to help collaborators to easily understand the DEM’s 3D representation and provides them with basic editing tools to modify the DEM shape in an intuitive manner. In addition, we implement an object sharing scheme, in order to support face-to-face interaction in real-time. By means of this approach, it is possible to create an original collaboration setting, in which a group of collocated colleagues, each carrying a mobile device, can concurrently create and modify the same DEM, while visualizing it using AR-technology. As shown by our results, the workload perceived by the users of our DEM editor is small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Carpentier, G.J.P.: Effective GPU-based Synthesis and Editing of Realistic Heightfields. Delft University of Technology, The Netherlands (2008)

    Google Scholar 

  2. Mandelbrot, B.B.: The Fractal Geometry of Nature, vol. 173. Macmillan, USA (1983)

    MATH  Google Scholar 

  3. Perlin, K., Hoffert, E.M.: Hypertexture. ACM SIGGRAPH Comput. Graph. 23(3), 253–262 (1989). ACM Press

    Article  Google Scholar 

  4. Musgrave, F.K., Kolb, C.E., Mace, R.S.: The synthesis and rendering of eroded fractal terrains. ACM SIGGRAPH Comput. Graph. 23(3), 41–50 (1989). ACM Press

    Article  Google Scholar 

  5. Belhadj, F., Audibert, P.: Modeling landscapes with ridges, rivers: bottom up approach. In: Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, pp. 447–450. ACM, November 2005

    Google Scholar 

  6. Belhadj, F.: Terrain Modeling: a constrained fractal model. In: Proceedings of the 5th International Conference on Computer Graphics. Virtual Reality, Visualisation and Interaction in Africa (AFRIGRAPH 2007), pp. 197–204. ACM Press, Grahamstown, South Africa (2007)

    Google Scholar 

  7. Kamal, K.R., Uddin, Y.S.: Parametrically controlled terrain generation. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia (GRAPHITE 2007), pp. 17–23. ACM Press, Perth (2007)

    Google Scholar 

  8. de Carpentier, G.J.P., Bidarra, R.: Interactive GPU-based procedural heightfield brushes. In: Proceedings of the 4th International Conference on Foundations of Digital Games (FDG 2009), pp. 55-62. ACM Press, Orlando (2009)

    Google Scholar 

  9. Bryce. http://www.daz3d.com/bryce-7-pro

  10. Vue. http://www.e-onsoftware.com/products/vue/

  11. Unity. http://unity3d.com/

  12. Ogre. http://www.ogre3d.org/

  13. Unreal. https://www.unrealengine.com/

  14. Maya. www.autodesk.mx/products/maya/overview

  15. Blender. www.blender.org

  16. WebGL-based online Terrain Editor. www.chromeexperiments.com/experiment/webgl-terrain-editor

  17. LandscapAR. https://play.google.com/

  18. Layar. https://www.layar.com/

  19. Metaio. http://www.metaio.com/

  20. Wikitude classroom application. http://www.wikitude.com/build-wikitude-world-google-collaborative-maps/

  21. Billinghurst, M., Kato, H., Poupyrev, I.: The MagicBook: a transitional AR interface. Comput. Graph. 25(5), 745–753 (2001). Elsevier

    Article  Google Scholar 

  22. Wagner, D., Pintaric, T., Ledermann, F., Schmalstieg, D.: Towards massively multi-user augmented reality on handheld devices. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 208–219. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Billinghurst, M., Kato, H., Hedley, N.R., Postner, L., May, R.: Explorations in the use of augmented reality for geographic visualization, presence: teleoperators and virtual environments. MIT Press J. 11(2), 119–133 (2006)

    Google Scholar 

  24. Arth, C., Gruber, L., Grasset, R., Langlotz, T., Mulloni, A., Schmalstieg, D., Wagner, D.: The History of Mobile Augmented Reality: Developments in Mobile AR over the last almost 50 years, Institute for Computer Graphics and Vision, Graz University of Technology, Technical Report ICGTR2015-001, Graz, Austria (2015)

    Google Scholar 

  25. Nam, T.J., Sakong, K.: Collaborative 3D workspace and interaction techniques for synchronous distributed product design reviews. Int. J. Des. Natl. Taiwan Univ. Sci. Technol. 3(1), 43–55 (2009)

    Google Scholar 

  26. Kasahara, S., Heun, V., Lee, A. S., Ishii, H.: Second Surface: multi-user spatial collaboration system based on augmented reality. In: SIGGRAPH Asia 2012 Emerging Technologies, pp. 1–4. ACM Press, Singapore (2012)

    Google Scholar 

  27. Ellis, C.A., Gibbs, S.J., Rein, G.: Groupware: some issues and experiences. Commun. ACM 34(1), 39–58 (1991)

    Article  Google Scholar 

  28. Sun, D., Sun, C.: Context-Based operational transformation in distributed collaborative editing systems. IEEE Trans. Parallel Distrib. Syst. 20(10), 1454–1470 (2009)

    Article  Google Scholar 

  29. Saucedo-Tejada, G., Mendoza, S., Decouchant, D.: F2FMI: a toolkit for facilitating face-to-face mobile interaction. Expert Syst. Appl. 40(15), 6173–6184 (2013). Elsevier

    Article  Google Scholar 

  30. NASA TLX. http://humansystems.arc.nasa.gov/groups/tlx/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Cortés-Dávalos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cortés-Dávalos, A., Mendoza, S. (2016). AR-based Modeling of 3D Objects in Multi-user Mobile Environments. In: Yuizono, T., Ogata, H., Hoppe, U., Vassileva, J. (eds) Collaboration and Technology. CRIWG 2016. Lecture Notes in Computer Science(), vol 9848. Springer, Cham. https://doi.org/10.1007/978-3-319-44799-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44799-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44798-8

  • Online ISBN: 978-3-319-44799-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics