Skip to main content

Research into the Cellular and Molecular Mechanisms of Regeneration in Salamanders: Then and Now

  • Chapter
  • First Online:
Innovations in Molecular Mechanisms and Tissue Engineering

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Urodele amphibians are unrivalled in their ability to regenerate as adults and provide a unique template in which to study the faithful repair of tissues and organs in tetrapods. They display a robust capacity to regenerate a range of clinically relevant tissues including the limb, heart, brain, tail, spinal cord, lens, retina, liver, jaw, muscle, skin and bone joints. Historically approaches to delineate the mechanisms of regeneration have been limited to simple surgical procedures, however renewed interest in the field of regenerative medicine has spawned development and adaptation of modern molecular tools to several species. Here we present a comprehensive review of the major research findings in the field of regeneration that have been reported utilizing the salamander with a natural bias toward the regenerating limb. We discuss both the tissue and molecular requirements of regeneration in several tissues as well as the challenges associated with sequencing the salamander genomes. Finally we provide perspectives on the future research directions to explore and how these strategies should utilize both unique gain of function assays and modern genome editing tools to initiate translation into mammalian models of regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forbes SJ, Rosenthal N (2014) Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 20:857–869. doi:10.1038/nm.3653

    Article  CAS  PubMed  Google Scholar 

  2. Goss RJ (2013) Principles of regeneration. Academic, New York

    Google Scholar 

  3. Dinsmore CE (2007) A history of regeneration research. Cambridge University Press, Cambridge

    Google Scholar 

  4. Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21:172–185. doi:10.1016/j.devcel.2011.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carlson BM (2011) Principles of regenerative biology. Academic, Burlington, MA

    Google Scholar 

  6. Stocum DL (2012) Regenerative Biology and Medicine, 2nd edn. Academic, San Diego

    Google Scholar 

  7. Reiß C, Olsson L, Hoßfeld U (2015) The history of the oldest self-sustaining laboratory animal: 150 years of axolotl research. J Exp Zool B Mol Dev Evol 324:393–404. doi:10.1002/jez.b.22617

    Article  PubMed  Google Scholar 

  8. Kumar A, Simon A (2015) Salamanders in regeneration research. Humana Press, New York, 10.1007/978-1-4939-2495-0

    Book  Google Scholar 

  9. Fröbisch NB, Bickelmann C, Witzmann F (2014) Early evolution of limb regeneration in tetrapods: evidence from a 300-million-year-old amphibian. Proc Biol Sci 281:20141550. doi:10.1098/rspb.2014.1550

    Article  PubMed  PubMed Central  Google Scholar 

  10. Godwin JW, Brockes JP (2006) Regeneration, tissue injury and the immune response. J Anat 209:423–432. doi:10.1111/j.1469-7580.2006.00626.x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Godwin JW, Rosenthal N (2014) Scar free wound healing in amphibians: immunological influences on regenerative success. Differentiation 87:66–75. doi:10.1016/j.diff.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  12. Garza-Garcia AA, Driscoll PC, Brockes JP (2010) Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integr Comp Biol 50:528–535. doi:10.1093/icb/icq022

    Article  PubMed  Google Scholar 

  13. Spallanzani L (1769) An essay on animal reproductions. In: Spallanzani L (ed) An essay on animal reproductions (translated from the italian). Becket and Hondt, London, pp 68–82

    Google Scholar 

  14. Thornton CS (1958) The inhibition of limb regeneration in urodele larvae by localized irradiation with ultraviolet light. J Exp Zool 137:153–179. doi:10.1002/jez.1401370108

    Article  CAS  PubMed  Google Scholar 

  15. Tornier G (1906) Kampf der Gewebe im Regenerat bei Begünstigung der Hautregeneration. Archiv für Entwicklungsmechanik der Organismen 22:348–369. doi:10.1007/BF02162806

    Article  Google Scholar 

  16. Godlewski E (1928) Untersuchungen über Auslösung und Hemmung der Regeneration beim Axolotl. Wilhelm Roux Arch Entwickl Mech Org 114:108–143

    Article  Google Scholar 

  17. Thornton CS (1954) The relation of epidermal innervation to limb regeneration in Ambystoma larvae. J Exp Zool 127:577–601. doi:10.1002/jez.1401270307

    Article  Google Scholar 

  18. Stocum DL, Thoms SD (1984) Retinoic-acid-induced pattern completion in regenerating double anterior limbs of urodeles. J Exp Zool 232:207–215. doi:10.1002/jez.1402320208

    Article  CAS  PubMed  Google Scholar 

  19. Stocum DL (1975) Regulation after proximal or distal transposition of limb regeneration blastemas and determination of the proximal boundary of the regenerate. Dev Biol 45:112–136. doi:10.1016/0012-1606(75)90246-8

    Article  CAS  PubMed  Google Scholar 

  20. Crawford K, Stocum DL (1988) Retinoic acid coordinately proximalizes regenerate pattern and blastema differential affinity in axolotl limbs. Development 102:687–698

    CAS  PubMed  Google Scholar 

  21. Carlson BM (1974) Morphogenetic interactions between rotated skin cuffs and underlying stump tissues in regenerating axolotl forelimbs. Dev Biol 39:263–285. doi:10.1016/S0012-1606(74)80029-1

    Article  CAS  PubMed  Google Scholar 

  22. Carlson BM (1975) The effects of rotation and positional change of stump tissues upon morphogenesis of the regenerating axolotl limb. Dev Biol 47:269–291. doi:10.1016/0012-1606(75)90282-1

    Article  CAS  PubMed  Google Scholar 

  23. Maden M (1982) Vitamin A and pattern formation in the regenerating limb. Nature 295:672–675. doi:10.1038/295672a0

    Article  CAS  PubMed  Google Scholar 

  24. Kim W-S, Stocum DL (1986) Effects of retinoids on regenerating limbs: comparison of retinoic acid and arotinoid at different amputation levels. Rouxs Arch Dev Biol 195:455–463. doi:10.1007/BF00375749

    Article  CAS  Google Scholar 

  25. Gardiner DM, Blumberg B, Komine Y, Bryant SV (1995) Regulation of HoxA expression in developing and regenerating axolotl limbs. Development 121:1731–1741

    CAS  PubMed  Google Scholar 

  26. Mullen LM, Bryant SV, Torok MA et al (1996) Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration. Development 122:3487–3497. doi:10.1016/0012-1606(92)90047-K

    CAS  PubMed  Google Scholar 

  27. Kawakami Y, Rodriguez Esteban C, Raya M et al (2006) Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev 20:3232–3237. doi:10.1101/gad.1475106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar A, Gates PB, Czarkwiani A, Brockes JP (2015) An orphan gene is necessary for preaxial digit formation during salamander limb development. Nat Commun 6:8684. doi:10.1038/ncomms9684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mercader N (2005) Proximodistal identity during vertebrate limb regeneration is regulated by Meis homeodomain proteins. Development 132:4131–4142. doi:10.1242/dev.01976

    Article  CAS  PubMed  Google Scholar 

  30. Shaikh N, Gates PB, Brockes JP (2011) The Meis homeoprotein regulates the axolotl Prod 1 promoter during limb regeneration. Gene 484:69–74. doi:10.1016/j.gene.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McCusker CD, Gardiner DM (2013) Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum). PLoS One 8, e77064. doi:10.1371/journal.pone.0077064.s005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nacu E, Glausch M, Le HQ et al (2013) Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl. Development 140:513–518. doi:10.1242/dev.081752

    Article  CAS  PubMed  Google Scholar 

  33. Kragl M, Knapp D, Nacu E et al (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65. doi:10.1038/nature08152

    Article  CAS  PubMed  Google Scholar 

  34. Faber J (1960) An experimental analysis of regional organization in the regenerating fore limb of the axolotl (Ambystoma mexicanum). Arch Biol (Liege) 71:1–72

    CAS  Google Scholar 

  35. Echeverri K, Tanaka EM (2005) Proximodistal patterning during limb regeneration. Dev Biol 279:391–401. doi:10.1016/j.ydbio.2004.12.029

    Article  CAS  PubMed  Google Scholar 

  36. Roensch K, Tazaki A, Chara O, Tanaka EM (2013) Progressive specification rather than intercalation of segments during limb regeneration. Science 342:1375–1379. doi:10.1126/science.1241796

    Article  CAS  PubMed  Google Scholar 

  37. Lévesque M, Gatien S, Finnson K et al (2007) Transforming growth factor β signaling is essential for limb regeneration in axolotls. PLoS One 2, e1227. doi:10.1371/journal.pone.0001227.t001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 110:9415–9420. doi:10.1073/pnas.1300290110/-/DCSupplemental/pnas.201300290SI.pdf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yun MH, Davaapil H, Brockes JP (2015) Recurrent turnover of senescent cells during regeneration of a complex structure. Elife 4, e05505. doi:10.7554/eLife.05505

    Article  PubMed Central  Google Scholar 

  40. Endo T, Bryant SV, Gardiner DM (2004) A stepwise model system for limb regeneration. Dev Biol 270:135–145. doi:10.1016/j.ydbio.2004.02.016

    Article  CAS  PubMed  Google Scholar 

  41. Satoh A, Gardiner DM, Bryant SV, Endo T (2007) Nerve-induced ectopic limb blastemas in the axolotl are equivalent to amputation-induced blastemas. Dev Biol 312:231–244. doi:10.1016/j.ydbio.2007.09.021

    Article  CAS  PubMed  Google Scholar 

  42. Satoh A, Hirata A, Makanae A (2012) Collagen reconstitution is inversely correlated with induction of limb regeneration in Ambystoma mexicanum. Zoolog Sci 29:191–197. doi:10.2108/zsj.29.191

    Article  CAS  PubMed  Google Scholar 

  43. Makanae A, Hirata A, Honjo Y et al (2013) Nerve independent limb induction in axolotls. Dev Biol 381(1):1–14. doi:10.1016/j.ydbio.2013.05.010

    Article  CAS  Google Scholar 

  44. Makanae A, Mitogawa K, Satoh A (2014) Co-operative Bmp- and Fgf-signaling inputs convert skin wound healing to limb formation in urodele amphibians. Dev Biol 396:57–66. doi:10.1016/j.ydbio.2014.09.021

    Article  CAS  PubMed  Google Scholar 

  45. Knapp D, Schulz H, Rascon CA et al (2013) Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program. PLoS One 8, e61352. doi:10.1371/journal.pone.0061352.s011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stewart R, Rascon CA, Tian S et al (2013) Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema. PLoS Comput Biol 9, e1002936. doi:10.1371/journal.pcbi.1002936.s012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Monaghan JR, Athippozhy A, Seifert AW et al (2012) Gene expression patterns specific to the regenerating limb of the Mexican axolotl. Biol Open 1:937–948. doi:10.1242/bio.20121594

    Article  PubMed  PubMed Central  Google Scholar 

  48. Holman EC, Campbell LJ, Hines J, Crews CM (2012) Microarray analysis of microrna expression during axolotl limb regeneration. PLoS One 7, e41804. doi:10.1371/journal.pone.0041804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu C-H, Tsai M-H, Ho C-C et al (2013) De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration. BMC Genomics 14:434. doi:10.1186/1471-2164-14-434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rao N, Jhamb D, Milner DJ et al (2009) Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol 7:83. doi:10.1186/1741-7007-7-83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Khattak S, Schuez M, Richter T et al (2013) Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl. Stem Cell Rep 1:90–103. doi:10.1016/j.stemcr.2013.03.002

    Article  CAS  Google Scholar 

  52. Monaghan JR, Maden M (2012) Gene expression patterns specific to the regenerating limb of the Mexican axolotl. Dev Biol 368:63–75. doi:10.1016/j.ydbio.2012.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu W, Pao GM, Satoh A et al (2012) Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl. Dev Biol 370:42–51. doi:10.1016/j.ydbio.2012.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuo TH, Kowalko JE, DiTommaso T et al (2015) TALEN-mediated gene editing of the thrombospondin-1 locus in axolotl. Regeneration 2:37–43. doi:10.1002/reg2.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mescher AL (1976) Effects on adult newt limb regeneration of partial and complete skin flaps over the amputation surface. J Exp Zool 195:117–127. doi:10.1002/jez.1401950111

    Article  CAS  PubMed  Google Scholar 

  56. Brockes JP, Kintner CR (1986) Glial growth factor and nerve-dependent proliferation in the regeneration blastema of Urodele amphibians. Cell 45:301–306

    Article  CAS  PubMed  Google Scholar 

  57. Iten LE, Bryant SV (1975) The interaction between the blastema and stump in the establishment of the anterior-posterior and proximal-distal organization of the limb regenerate. Dev Biol 44:119–147. doi:10.1016/0012-1606(75)90381-4

    Article  CAS  PubMed  Google Scholar 

  58. Bryant SV, Iten LE (1976) Supernumerary limbs in amphibians: experimental production in Notophthalmus viridescens and a new interpretation of their formation. Dev Biol 50:212–234. doi:10.1016/0012-1606(76)90079-8

    Article  CAS  PubMed  Google Scholar 

  59. da Silva SM, Gates PB, Brockes JP (2002) The newt ortholog of cd59 is implicated in proximodistal identity during amphibian limb regeneration. Dev Cell 3:547–555. doi:10.1016/S1534-5807(02)00288-5

    Article  PubMed  Google Scholar 

  60. Kumar A, Godwin JW, Gates PB et al (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318:772–777. doi:10.1126/science.1147710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fini ME, Sicard RE (1980) Limb regeneration of the adult newt (Notophthalmus viridescens) in the absence of the spleen. Rouxs Arch Dev Biol 189:77–79. doi:10.1007/BF00848570

    Article  Google Scholar 

  62. Schotté OE, Sicard RE (1982) Cyclophosphamide-induced leukopenia and suppression of limb regeneration in the adult newt, Notophthalmus viridescens. J Exp Zool 222:199–202. doi:10.1002/jez.1402220212

    Article  PubMed  Google Scholar 

  63. Sicard RE, Laffond WT (1983) Putative immunological influence upon amphibian forelimb regeneration. Pathobiology 51:337–344. doi:10.1159/000163213

    Article  CAS  Google Scholar 

  64. Sicard RE, Lombard MF (1990) Putative immunological influence upon amphibian forelimb regeneration. II. Effects of X-irradiation on regeneration and allograft rejection. Biol Bull 178:21–24

    Article  Google Scholar 

  65. Vinarsky V, Atkinson DL, Stevenson TJ et al (2005) Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol 279:86–98. doi:10.1016/j.ydbio.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  66. Tsonis PA, Eguchi G (1982) Abnormal limb regeneration without tumor production in adult newts directed by carcinogens, 20-methylcholanthrene and benzo (α) pyrene. Develop Growth Differ 24:183–190. doi:10.1111/j.1440-169X.1982.00183.x

    Article  CAS  Google Scholar 

  67. Pfeiffer CJ, Nagai T, Fujimura M, Tobe T (1985) Teratogenic effects of carcinogenic agents on limb regeneration in the japanese newt Cynops pyrrhogaster. Teratog Carcinog Mutagen 5:137–147. doi:10.1002/tcm.1770050303

    Article  CAS  PubMed  Google Scholar 

  68. Imokawa Y, Yoshizato K (1997) Expression of Sonic hedgehog gene in regenerating newt limb blastemas recapitulates that in developing limb buds. Proc Natl Acad Sci U S A 94:9159–9164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lheureux E (1983) Replacement of irradiated epidermis by migration of non- irradiated epidermis in the newt limb: the necessity of healthy epidermis for regeneration. J Embryol Exp Morphol 76:217–223

    CAS  PubMed  Google Scholar 

  70. Lheureux E, Thoms SD, Carey F (1986) The effects of two retinoids on limb regeneration in Pleurodeles waltl and Triturus vulgaris. J Embryol Exp Morphol 92:165–182

    CAS  PubMed  Google Scholar 

  71. Zenjari C, Boilly B, Hondermarck H, Boilly Marer Y (1997) Nerve-blastema interactions induce fibroblast growth factor-1 release during limb regeneration in Pleurodeles waltl. Dev Growth Differ 39:15–22. doi:10.1046/j.1440-169X.1997.00003.x

    Article  CAS  PubMed  Google Scholar 

  72. Schotté OE, Butler EG (1941) Morphological effects of denervation and amputation of limbs in urodele larvae. J Exp Zool 87:279–322. doi:10.1002/jez.1400870207

    Article  Google Scholar 

  73. Singer M (1943) The nervous system and regeneration of the forelimb of adult triturus. II. The role of the sensory supply. J Exp Zool 92:297–315. doi:10.1002/jez.1400920305

    Article  Google Scholar 

  74. Bodemer CW (1958) The development of nerve-induced supernumerary limbs in the adult newt, Triturus viridescens. J Morphol 102:555–581. doi:10.1002/jmor.1051020304

    Article  Google Scholar 

  75. Lebowitz P, Singer M (1970) Neurotrophic control of protein synthesis in the regenerating limb of the newt, Triturus. Nature 225:824–827

    Article  CAS  PubMed  Google Scholar 

  76. Flink IL (2002) Cell cycle reentry of ventricular and atrial cardiomyocytes and cells within the epicardium following amputation of the ventricular apex in the axolotl, Ambystoma mexicanum: confocal microscopic immunofluorescent image analysis of bromodeoxyuridine-labeled nuclei. Anat Embryol 205:235–244. doi:10.1007/s00429-002-0249-6

    Article  PubMed  Google Scholar 

  77. Cano-Martínez A, Vargas-González A (2010) Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation. Arch Cardiol Mex 80:79–86

    PubMed  Google Scholar 

  78. Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187:249–259. doi:10.1002/jez.1401870208

    Article  CAS  PubMed  Google Scholar 

  79. Bettencourt-Dias M, Mittnacht S, Brockes JP (2003) Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J Cell Sci 116:4001–4009. doi:10.1242/jcs.00698

    Article  CAS  PubMed  Google Scholar 

  80. Witman N, Murtuza B, Davis B et al (2011) Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev Biol 354:67–76. doi:10.1016/j.ydbio.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  81. Witman N, Heigwer J, Thaler B et al (2013) miR-128 regulates non-myocyte hyperplasia, deposition of extracellular matrix and Islet1 expression during newt cardiac regeneration. Dev Biol 383:253–263. doi:10.1016/j.ydbio.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  82. Mercer SE, Odelberg SJ, Simon H-G (2013) A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Dev Biol 382:457–469. doi:10.1016/j.ydbio.2013.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Looso M, Preussner J, Sousounis K, Bruckskotten M, Michel CS, Lignelli E et al (2013) A de novo assembly of the newt transcriptome combined with proteomic validation identifies new protein families expressed during tissue regeneration. Genome Biol 14(2):R16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Looso M, Borchardt T, Krüger M, Braun T (2010) Advanced identification of proteins in uncharacterized proteomes by pulsed in vivo stable isotope labeling-based mass spectrometry. Mol Cell Proteomics 9:1157–1166. doi:10.1074/mcp.M900426-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kirsche K, Kirsche W (1964) Regenerative processes in the telencephalon of Ambystoma mexicanum. J Hirnforsch 7:421–436

    CAS  PubMed  Google Scholar 

  86. Maden M, Manwell LA, Ormerod BK (2013) Proliferation zones in the axolotl brain and regeneration of the telencephalon. Neural Dev 8:1. doi:10.1186/1749-8104-8-1

    Article  PubMed  PubMed Central  Google Scholar 

  87. Parish CL, Beljajeva A, Arenas E, Simon A (2007) Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model. Development 134:2881–2887. doi:10.1242/dev.002329

    Article  CAS  PubMed  Google Scholar 

  88. Berg DA, Kirkham M, Beljajeva A et al (2010) Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development 137:4127–4134. doi:10.1242/dev.055541

    Article  CAS  PubMed  Google Scholar 

  89. Berg DA, Kirkham M, Wang H et al (2011) Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons. Cell Stem Cell 8:426–433. doi:10.1016/j.stem.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  90. Hameed LS, Berg DA, Belnoue L et al (2015) Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain. Elife. doi:10.7554/eLife.08422.001

    PubMed  PubMed Central  Google Scholar 

  91. Suetsugu-Maki R, Maki N, Nakamura K et al (2012) Lens regeneration in axolotl: new evidence of developmental plasticity. BMC Biol 10:1. doi:10.1186/1741-7007-10-103

    Article  Google Scholar 

  92. Grogg MW, Call MK, Okamoto M et al (2005) BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature 438:858–862. doi:10.1038/nature04175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Eguchi G, Eguchi Y, Nakamura K et al (2011) Regenerative capacity in newts is not altered by repeated regeneration and ageing. Nat Commun 2:384. doi:10.1038/ncomms1389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Sousounis K, Qi F, Yadav MC et al (2015) A robust transcriptional program in newts undergoing multiple events of lens regeneration throughout their lifespan. Elife. doi:10.7554/eLife.09594.001

    PubMed  PubMed Central  Google Scholar 

  95. Sousounis K, Michel CS, Bruckskotten M (2013) A microarray analysis of gene expression patterns during early phases of newt lens regeneration. Mol Vis 19:135–145

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Madhavan M, Haynes TL, Frisch NC et al (2006) The role of Pax-6 in lens regeneration. Proc Natl Acad Sci U S A 103:14848–14853. doi:10.1073/pnas.0601949103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nakamura K, Islam MR, Takayanagi M et al (2014) A transcriptome for the study of early processes of retinal regeneration in the adult newt, Cynops pyrrhogaster. PLoS One 9, e109831. doi:10.1371/journal.pone.0109831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Reyer RW (1948) An experimental study of lens regeneration in Triturus viridescens viridescens. I. Regeneration of a lens after lens extirpation in embryos and larvae of different ages. J Exp Zool 107:217–267. doi:10.1002/jez.1401070205

    Article  CAS  PubMed  Google Scholar 

  99. Reyer RW (1954) Further studies on lens development from the dorsal iris of Triturus viridescens viridescens in the absence of the embryonic lens. J Exp Zool 125:1–15. doi:10.1002/jez.1401250102

    Article  Google Scholar 

  100. Eguchi G (1963) Electron microscopic studies on lens regeneration. Dev Growth Differ 8:45–62. doi:10.1111/j.1440-169X.1963.tb00185.x

    Article  Google Scholar 

  101. Reyer RW (1966) The influence of neural retina and lens on lens regeneration from dorsal iris implants in Triturus viridescens larvae. Dev Biol 14:214–245. doi:10.1016/0012-1606(66)90014-5

    Article  CAS  PubMed  Google Scholar 

  102. Piatt J (1955) Regeneration of the spinal cord in the salamander. J Exp Zool 129:177–207. doi:10.1002/jez.1401290109

    Article  Google Scholar 

  103. Echeverri K, Tanaka EM (2002) Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298:1993–1996. doi:10.1126/science.1077804

    Article  CAS  PubMed  Google Scholar 

  104. Mchedlishvili L, Epperlein HH, Telzerow A, Tanaka EM (2007) A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development 134:2083–2093. doi:10.1242/dev.02852

    Article  CAS  PubMed  Google Scholar 

  105. Mchedlishvili L, Mazurov V, Grassme KS et al (2012) Reconstitution of the central and peripheral nervous system during salamander tail regeneration. Proc Natl Acad Sci U S A 109:E2258–E2266. doi:10.1073/pnas.1116738109/-/DCSupplemental/pnas.201116738SI.pdf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rodrigo Albors A, Tazaki A, Rost F et al (2015) Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration. Elife 4:664. doi:10.7554/eLife.10230

    Article  Google Scholar 

  107. Sehm T, Sachse C, Frenzel C, Echeverri K (2009) miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events. Dev Biol 334:468–480. doi:10.1016/j.ydbio.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  108. Quiroz JFD, Tsai E, Coyle M et al (2014) Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat. Dis Model Mech 7:601–611. doi:10.1242/dmm.014837

    Article  CAS  Google Scholar 

  109. Gearhart M, Erickson J, Walsh A, Echeverri K (2015) Identification of conserved and novel microRNAs during tail regeneration in the Mexican axolotl. Int J Mol Sci 2015(16):22046–22061. doi:10.3390/ijms160922046

    Article  CAS  Google Scholar 

  110. Monaghan JR, Walker JA, Page RB et al (2007) Early gene expression during natural spinal cord regeneration in the salamander Ambystoma mexicanum. J Neurochem 101:27–40. doi:10.1111/j.1471-4159.2006.04344.x

    Article  CAS  PubMed  Google Scholar 

  111. Fei J-F, Schuez M, Tazaki A et al (2014) CRISPR-mediated genomic deletion of sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Rep 3:444–459. doi:10.1016/j.stemcr.2014.06.018

    Article  CAS  Google Scholar 

  112. Nicolas S, Papillon D, Perez Y et al (2003) The spatial restrictions of 5′HoxC genes expression are maintained in adult newt spinal cord. Biol Cell 95:389–394. doi:10.1016/j.biolcel.2003.09.004

    Article  CAS  Google Scholar 

  113. Zukor KA, Kent DT, Odelberg SJ (2010) Fluorescent whole-mount method for visualizing three-dimensional relationships in intact and regenerating adult newt spinal cords. Dev Dyn 239:3048–3057. doi:10.1002/dvdy.22441

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zukor KA, Kent DT, Odelberg SJ (2011) Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts. Neural Dev 6:1. doi:10.1186/1749-8104-6-1

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lepp AC, Carlone RL (2014) RARβ2 expression is induced by the down-regulation of microRNA 133a during caudal spinal cord regeneration in the adult newt. Dev Dyn 243:1581–1590. doi:10.1002/dvdy.24210

    Article  CAS  PubMed  Google Scholar 

  116. Chevallier S, Landry M, Nagy F, Cabelguen JM (2004) Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii. Eur J Neurosci 20:1995–2007. doi:10.1111/j.1460-9568.2004.03671.x

    Article  PubMed  Google Scholar 

  117. Egar M, Singer M (1972) The role of ependyma in spinal cord regeneration in the urodele, Triturus. Exp Neurol 37:422–430. doi:10.1016/0014-4886(72)90085-4

    Article  CAS  PubMed  Google Scholar 

  118. Jordan HE, Beams HW (1930) Hepatectomy in the salamander with special reference to hemopoiesis and cytology of the liver remnant. Exp Biol Med 28:181–184. doi:10.3181/00379727-28-5219

    Article  Google Scholar 

  119. Williams DD (1961) Liver regeneration in the newt, Triturus viridescens. Physiol Zool 34:256–259. doi:10.2307/30152702

    Article  Google Scholar 

  120. Goss RJ, Stagg MW (1958) Regeneration of lower jaws in adult newts. J Morphol 102:289–309. doi:10.1002/jmor.1051020204

    Article  Google Scholar 

  121. Ghosh S, Thorogood P, Ferretti P (1994) Regenerative capability of upper and lower jaws in the newt. Int J Dev Biol 38:479–490

    CAS  PubMed  Google Scholar 

  122. Ghosh S, Thorogood P, Ferretti P (1996) Regeneration of lower and upper jaws in urodeles is differentially affected by retinoic acid. Int J Dev Biol 40:1161–1170

    CAS  PubMed  Google Scholar 

  123. Kurosaka H, Takano Yamamoto T, Yamashiro T, Agata K (2008) Comparison of molecular and cellular events during lower jaw regeneration of newt (Cynops pyrrhogaster) and West African clawed frog (Xenopus tropicalis). Dev Dyn 237:354–365. doi:10.1002/dvdy.21419

    Article  CAS  PubMed  Google Scholar 

  124. Finch RA (1969) The influence of the nerve on lower jaw regeneration in the adult newt, Triturus viridescens. J Morphol 129:401–413. doi:10.1002/jmor.1051290403

    Article  CAS  PubMed  Google Scholar 

  125. Lee J, Gardiner DM (2012) Regeneration of limb joints in the axolotl (Ambystoma mexicanum). PLoS One 7, e50615. doi:10.1371/journal.pone.0050615.g001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hutchison C, Pilote M, Roy S (2007) The axolotl limb: a model for bone development, regeneration and fracture healing. Bone 40:45–56. doi:10.1016/j.bone.2006.07.005

    Article  PubMed  Google Scholar 

  127. Tsutsumi R, Inoue T, Yamada S, Agata K (2015) Reintegration of the regenerated and the remaining tissues during joint regeneration in the newt Cynops pyrrhogaster. Regeneration 2:26–36. doi:10.1002/reg2.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Thornton CS (1938) The histogenesis of muscle in the regenerating fore limb of larval Amblystoma punctatum. J Morphol 62:17–47. doi:10.1002/jmor.1050620104

    Article  Google Scholar 

  129. Carlson BM (1970) The regeneration of a limb muscle in the axolotl from minced fragments. Anat Rec 166:423–435. doi:10.1002/ar.1091660302

    Article  CAS  PubMed  Google Scholar 

  130. Diogo R, Nacu E, Tanaka EM (2014) Is salamander limb regeneration really perfect? Anatomical and morphogenetic analysis of forelimb muscle regeneration in GFP-transgenic axolotls as a basis for regenerative, developmental, and evolutionary studies. Anat Rec 297:1076–1089. doi:10.1002/ar.22906

    Article  CAS  Google Scholar 

  131. Sandoval-Guzmán T, Wang H, Khattak S et al (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14:174–187. doi:10.1016/j.stem.2013.11.007

    Article  PubMed  CAS  Google Scholar 

  132. Morrison JI, Lööf S, He P, Simon A (2006) Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 172:433–440. doi:10.1083/jcb.200509011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Morrison JI, Borg P, Simon A (2010) Plasticity and recovery of skeletal muscle satellite cells during limb regeneration. FASEB J 24:750–756. doi:10.1096/fj.09-134825

    Article  CAS  PubMed  Google Scholar 

  134. Calve S, Odelberg SJ, Simon H-G (2010) A transitional extracellular matrix instructs cell behavior during muscle regeneration. Dev Biol 344:259–271. doi:10.1016/j.ydbio.2010.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Reyer RW (1954) Regeneration of the lens in the amphibian eye. Q Rev Biol 29:1–46. doi:10.2307/2812386

    Article  CAS  PubMed  Google Scholar 

  136. Goss RJ (1969) Principles of regeneration. Academic, New York

    Google Scholar 

  137. Todd TJ (1823) On the process of reproduction of the members of the aquatic salamander. Q J Sci Lit Arts 16:84–96

    Google Scholar 

  138. Singer M (1952) The influence of the nerve in regeneration of the amphibian extremity. Q Rev Biol 27:169–200. doi:10.2307/2811581

    Article  CAS  PubMed  Google Scholar 

  139. Singer M, Rzehak K, Maier CS (1967) The relation between the caliber of the axon and the trophic activity of nerves in limb regeneration. J Exp Zool 166:89–97. doi:10.1002/jez.1401660110

    Article  CAS  PubMed  Google Scholar 

  140. Brockes JP (1984) Mitogenic growth factors and nerve dependence of limb regeneration. Science 225:1280–1287

    Article  CAS  PubMed  Google Scholar 

  141. Tassava RA, Mccullough WD (1978) Neural control of cell cycle events in regenerating salamander limbs. Am Zool 18:843–854. doi:10.1093/icb/18.4.843

    Article  Google Scholar 

  142. Locatelli DP (1929) Der Einfluss des nervensystems auf die regeneration. Wilhelm Roux Arch Entwickl Mech Org 114:686–770. doi:10.1007/BF02078924

    Article  Google Scholar 

  143. Bodemer CW (1959) Observations on the mechanism of induction of supernumerary limbs in adult Triturus viridescens. J Exp Zool 140:79–99. doi:10.1002/jez.1401400105

    Article  CAS  PubMed  Google Scholar 

  144. Cohen N (1969) Immunogenetic and developmental aspects of tissue transplantation immunity in urodele amphibians. In: Mizell M (ed) Biology of amphibian tumors. Springer, Berlin Heidelberg, pp 153–168.

    Google Scholar 

  145. Kinefuchi K, Kushida Y, Touma M, Hosono M (2013) Limited immune diversity in Urodela: chronic transplantation responses occur even with family-disparate xenografts. Zoolog Sci 30:577–584. doi:10.2108/zsj.30.577

    Article  CAS  PubMed  Google Scholar 

  146. Butler EG (1951) The mechanics of blastema formation and regeneration in urodele limbs of reversed polarity. Trans NY Acad Sci 13:164–167. doi:10.1111/j.2164-0947.1951.tb01015.x

    Article  Google Scholar 

  147. Bohn H (1972) The origin of the epidermis in the supernumerary regenerates of triple legs in cockroaches (Blattaria). J Embryol Exp Morphol 28:185–208

    CAS  PubMed  Google Scholar 

  148. Lheureux E (1972) Contribution a l’etude du role de la peau et des tissus axiaux du membre dans le declenchement de morphogeneses regeneratrices anormales chez le triton Pleurodeles waltii. Ann Embryol Morphog 5:165–172

    Google Scholar 

  149. Niazi IA, Saxena S (1978) Abnormal hind limb regeneration in tadpoles of the toad, Bufo andersoni, exposed to excess vitamin A. Folia Biol (Krakow) 26:3–8

    CAS  Google Scholar 

  150. Kim W-S, Stocum DL (1986) Retinoic acid modifies positional memory in the anteroposterior axis of regenerating axolotl limbs. Dev Biol 114:170–179. doi:10.1016/0012-1606(86)90393-3

    Article  CAS  PubMed  Google Scholar 

  151. Tsonis PA, Trombley MT, Rowland T et al (2000) Role of retinoic acid in lens regeneration. Dev Dyn 219:588–593. doi:10.1002/1097-0177(2000)9999:9999<::AID-DVDY1082>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  152. Garza-Garcia A, Harris R, Esposito D et al (2009) Solution structure and phylogenetics of Prod1, a member of the three-finger protein superfamily implicated in salamander limb regeneration. PLoS One 4, e7123. doi:10.1371/journal.pone.0007123.s010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Geng J, Gates PB, Kumar A et al (2015) Identification of the orphan gene Prod 1 in basal and other salamander families. Evodevo 6:9. doi:10.1186/s13227-015-0006-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Sobkow L, Epperlein HH, Herklotz S et al (2006) A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev Biol 290:386–397. doi:10.1016/j.ydbio.2005.11.037

    Article  CAS  PubMed  Google Scholar 

  155. Sicard RE (1983) Blood cells and their role in regeneration. Pathobiology 51:51–59. doi:10.1159/000163173

    Article  CAS  Google Scholar 

  156. Debuque RJ, Godwin JW (2015) Methods for axolotl blood collection, intravenous injection, and efficient leukocyte isolation from peripheral blood and the regenerating limb. In: Kumar A, Simon A (eds) Salamanders in regeneration research. Springer, New York, NY, pp 205–226

    Google Scholar 

  157. Lopez D, Lin L, Monaghan JR et al (2014) Mapping hematopoiesis in a fully regenerative vertebrate: the axolotl. Blood 124:1232–1241. doi:10.1182/blood-2013-09-526970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Diaz Quiroz JF, Tsai E, Coyle M et al (2014) Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat. Dis Model Mech 7:601–611. doi:10.1242/dmm.014837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Henry JJ, Tsonis PA (2010) Molecular and cellular aspects of amphibian lens regeneration. Prog Retin Eye Res 29:543–555. doi:10.1016/j.preteyeres.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Licht LE, Lowcock LA (1991) Genome size and metabolic rate in salamanders. Comp Biochem Physiol B 100:83–92. doi:10.1016/0305-0491(91)90089-V

    Google Scholar 

  161. Sun C, Shepard DB, Chong RA et al (2012) LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol Evol 4:168–183. doi:10.1093/gbe/evr139

    Article  PubMed  Google Scholar 

  162. Smith JJ, Putta S, Zhu W et al (2009) Genic regions of a large salamander genome contain long introns and novel genes. BMC Genomics 10:19. doi:10.1186/1471-2164-10-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhang P, Wake DB (2009) Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 53:492–508. doi:10.1016/j.ympev.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  164. Abdullayev I, Kirkham M, Björklund ÅK et al (2013) A reference transcriptome and inferred proteome for the salamander Notophthalmus viridescens. Exp Cell Res 319:1187–1197. doi:10.1016/j.yexcr.2013.02.013

    Article  CAS  PubMed  Google Scholar 

  165. Baddar NWAH, Woodcock MR, Khatri S et al (2015) Sal-site: research resources for the Mexican axolotl. In: Kumar A, Simon A (eds) Salamanders in regeneration research. Springer, New York, NY, pp 321–336

    Google Scholar 

  166. Bruckskotten M, Looso M, Reinhardt R et al (2012) Newt-omics: a comprehensive repository for omics data from the newt Notophthalmus viridescens. Nucl Acids Res 40:D895–D900. doi:10.1093/nar/gkr873

    Article  CAS  PubMed  Google Scholar 

  167. Looso M, Braun T (2015) Data mining in newt-omics, the repository for omics data from the newt. In: Kumar A, Simon A (eds) Salamanders in regeneration research. Springer, New York, NY, pp 337–351

    Google Scholar 

  168. Rao N, Song F, Jhamb D et al (2014) Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl. BMC Dev Biol 14:32. doi:10.1186/1471-213X-14-32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Looso M, Michel CS, Konzer A et al (2012) Spiked-in pulsed in vivo labeling identifies a new member of the ccn family in regenerating newt hearts. J Proteome Res 11:4693–4704. doi:10.1021/pr300521p

    Article  CAS  PubMed  Google Scholar 

  170. Keinath MC, Timoshevskiy VA, Timoshevskaya NY et al (2015) Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing. Sci Rep 5:16413. doi:10.1038/srep16413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Roy S, Gardiner DM, Bryant SV (2000) Vaccinia as a tool for functional analysis in regenerating limbs: ectopic expression of Shh. Dev Biol 218:199–205. doi:10.1006/dbio.1999.9556

    Article  CAS  PubMed  Google Scholar 

  172. Laube F, Heister M, Scholz C et al (2006) Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci 119:4719–4729. doi:10.1242/jcs.03252

    Article  CAS  PubMed  Google Scholar 

  173. Whited JL, Tsai SL, Beier KT et al (2013) Pseudotyped retroviruses for infecting axolotl in vivo and in vitro. Development 140:1137–1146. doi:10.1242/dev.087734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Khattak S, Sandoval-Guzmán T, Stanke N et al (2013) Foamy virus for efficient gene transfer in regeneration studies. BMC Dev Biol 13:17. doi:10.1128/JVI.76.8.3774-3783.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Casco Robles MM, Yamada S, Miura T, Chiba C (2010) Simple and efficient transgenesis with I-SceI meganuclease in the newt, Cynops pyrrhogaster. Dev Dyn 239:3275–3284. doi:10.1002/dvdy.22463

    Article  CAS  PubMed  Google Scholar 

  176. Hayashi T, Yokotani N, Tane S et al (2013) Molecular genetic system for regenerative studies using newts. Dev Growth Differ 55:229–236. doi:10.1111/dgd.12019

    Article  PubMed  Google Scholar 

  177. Hayashi T, Sakamoto K, Sakuma T et al (2014) Transcription activator-like effector nucleases efficiently disrupt the target gene in Iberian ribbed newts (Pleurodeles waltl), an experimental model animal for regeneration. Dev Growth Differ 56:115–121. doi:10.1111/dgd.12103

    Article  CAS  PubMed  Google Scholar 

  178. Flowers GP, Timberlake AT, McLean KC et al (2014) Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development 141:2165–2171. doi:10.1242/dev.105072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Khattak S, Murawala P, Andreas H et al (2014) Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen- mediated recombination. Nat Protoc 9:529–540. doi:10.1038/nprot.2014.040

    Article  CAS  PubMed  Google Scholar 

  180. Schnapp E, Tamaka EM (2004) Quantitative evaluation of morpholino-mediated protein knockdown of GFP, MSX1, and PAX7 during tail regeneration in Ambystoma mexicanum. Dev Dyn 232:162–170. doi:10.1002/dvdy.20203

    Article  CAS  Google Scholar 

  181. Lam NT, Currie PD, Lieschke GJ et al (2012) Nerve growth factor stimulates cardiac regeneration via cardiomyocyte proliferation in experimental heart failure. PLoS One 7, e53210. doi:10.1371/journal.pone.0053210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mahmoud AI, O’Meara CC, Gemberling M et al (2015) Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev Cell 34:387–399. doi:10.1016/j.devcel.2015.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Takeo M, Chou WC, Sun Q et al (2013) Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature 499:228–232. doi:10.1038/nature12214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Buckley G, Wong J, Metcalfe AD, Ferguson MWJ (2012) Denervation affects regenerative responses in MRL/MpJ and repair in C57BL/6 ear wounds. J Anat 220:3–12. doi:10.1111/j.1469-7580.2011.01452.x

    Article  CAS  PubMed  Google Scholar 

  185. Yamazaki S, Ema H, Karlsson G et al (2011) Nonmyelinating schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158. doi:10.1016/j.cell.2011.09.053

    Article  CAS  PubMed  Google Scholar 

  186. Brownell I, Guevara E, Bai CB et al (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8:552–565. doi:10.1016/j.stem.2011.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mescher AL, Neff AW, King MW (2013) Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs. PLoS One 8, e80477. doi:10.1371/journal.pone.0080477.t002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Love NR, Chen Y, Ishibashi S et al (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15:222–228. doi:10.1038/ncb2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Petrie TA, Strand NS, Tsung-Yang C et al (2014) Macrophages modulate adult zebrafish tail fin regeneration. Development 141:2581–2591. doi:10.1242/dev.098459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Heredia JE, Mukundan L, Chen FM et al (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153:376–388. doi:10.1016/j.cell.2013.02.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Aurora AB, Porrello ER, Tan W et al (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124:1382–1392. doi:10.1172/JCI72181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Godwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Debuque, R.J., Godwin, J.W. (2016). Research into the Cellular and Molecular Mechanisms of Regeneration in Salamanders: Then and Now. In: Wilson-Rawls, J., Kusumi, K. (eds) Innovations in Molecular Mechanisms and Tissue Engineering. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-44996-8_1

Download citation

Publish with us

Policies and ethics