Skip to main content

Evidence-Based Assessment and Intervention for Dyscalculia and Maths Disabilities in School Psychology

  • Chapter
  • First Online:
Handbook of Australian School Psychology

Abstract

In this chapter we describe the current status of knowledge about maths disabilities and dyscalculia, as well as suggested assessment and intervention practices that may help children with these difficulties. Historical perspectives about dyscalculia are reviewed, and common symptoms associated with the disability are described, especially math difficulties in young children. We review contemporary neuropsychological accounts about the origins of developmental dyscalculia, describing recent neurological, genetic, and behavioural research that has led to reconceptualizing the nature of children’s math difficulties. In the second half of the chapter, contemporary ideas about the assessment and intervention of children with maths difficulties are reviewed. We note the importance of specifying the relationship between assessment results and targeted intervention of children’s maths difficulties. We review the ways in which contemporary assessment instruments have been used to identify children’s maths difficulties. Of particular interest is the effectiveness of these techniques in identifying patterns of deficits known to be associated with developmental dyscalculia. We also note other difficulties (e.g. math anxiety) that might lead to an inaccurate picture of maths abilities, as well as factors that may prevent appropriate remedial interventions. In the latter part of the chapter, we describe components of effective interventions, in particular maths fluency and metacognitive interventions that might be included in an effective assessment of dyscalculia. We conclude by presenting an illustrative case study of a 7-year-old who has severe math difficulty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We distinguish between developmental dyscalculia and acquired acalculia (see Reeve & Humberstone, 2012). The latter is often associated with acquired brain insult (e.g. stroke), while DD is evident early in life and likely reflects brain dysfunction (see Nieder & Dehaene, 2009).

  2. 2.

    Brian Butterworth: www.mathematicalbrain.com; Roi Cohen Kadosh: https://cohenkadosh.psy.ox.ac.uk; Anna Wilson: Dyscalculia—www.aboutdyscalculia.org.

References

  • Alexander, L., & Martray, C. (1989). The development of an abbreviated version of the Mathematics Anxiety Rating Scale. Measurement and Evaluation in Counseling and Development, 22, 143–150.

    Google Scholar 

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders, (DSM-5®). Arlington, VA: American Psychiatric Publishing.

    Book  Google Scholar 

  • Andersson, U. (2008). Mathematical competencies in children with different types of learning difficulties. Journal of Educational Psychology, 100(1), 48–66. doi:10.1037/0022-0663/100.1.48.

    Article  Google Scholar 

  • Arp, S., Taranne, P., & Fagard, J. (2006). Global perception of small numerosities (subitizing) in cerebral-palsied children. Journal of Clinical and Experimental Neuropsychology, 28(3), 405–419. doi:10.1080/13803390590935426.

    Article  PubMed  Google Scholar 

  • Bishop, D. V. (2010). Which neurodevelopmental disorders get researched and why? PLoS ONE, 5(11), e15112. doi:10.1371/journal.pone.0015112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruandet, M., Molko, N., Cohen, L., & Dehaene, S. (2004). A cognitive characterization of dyscalculia in Turner syndrome. Neuropsychologia, 42(3), 288–298. doi:10.1016/j.neuropsychologia.2003.08.007.

    Article  PubMed  Google Scholar 

  • Bugden, S., & Ansari, D. (2015). How can developmental neuroscience constrain our understanding of developmental dyscalculia? In S. Chinn (Ed.), The Routledge international handbook of dyscalculia and mathematical learning difficulties (pp. 18–43). New York: Routledge.

    Google Scholar 

  • Butterworth, B. (1999). The mathematical brain. London: Macmillan.

    Google Scholar 

  • Butterworth, B. (2003). Dyscalculia screener. London: NferNelson.

    Google Scholar 

  • Butterworth, B. (2005). Developmental dyscalculia. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 455–468). New York: Psychology Press.

    Google Scholar 

  • Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14(12), 534–541. doi:10.1016/j.tics.2010.09.007.

    Article  PubMed  Google Scholar 

  • Butterworth, B., & Kovas, Y. (2013). Understanding neurocognitive developmental disorders can improve education for all. Science, 340(6130), 300–305. doi:10.1126/science.1231022.

    Article  PubMed  Google Scholar 

  • Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332(6033), 1049–1053. doi:10.1126/science.1201536.

    Article  PubMed  Google Scholar 

  • Butterworth, B., & Yeo, D. (2004). Dyscalculia guidance: Helping pupils with specific learning difficulties in maths. London: NferNelson.

    Google Scholar 

  • Capano, L., Minden, D., Chen, S. Z., Schachar, R. J., & Ickowicz, A. (2008). Mathematical learning disorder in school-age children with attention-deficit hyperactivity disorder. Canadian Journal of Psychiatry, 53, 392–399.

    PubMed  Google Scholar 

  • Chinn, S. (2015). The Routledge international handbook of dyscalculia and mathematical learning difficulties: An overview. In S. Chinn (Ed.), The Routledge international handbook of dyscalculia and mathematical learning difficulties (pp. 1–17). New York: Routledge.

    Google Scholar 

  • Clark, C. A., Pritchard, V. E., & Woodward, L. J. (2010). Preschool executive functioning abilities predict early mathematics achievement. Developmental Psychology, 46(5), 1176–1191. doi:10.1037/a0019672.

  • Connolly, A. J. (2008). KeyMath 3 diagnostic assessment. Bloomington, MN: Pearson.

    Google Scholar 

  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.

    Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506. doi:10.1080/02643290244000239.

    Article  PubMed  Google Scholar 

  • Feigenson, L., & Carey, S. (2005). On the limits of infants’ quantification of small object arrays. Cognition, 97(3), 295–313. doi:10.1016/j.cognition.2004.09.010.

    Article  PubMed  Google Scholar 

  • Feigenson, L., Carey, S., & Hauser, M. (2002). The representations underlying infants’ choice of more: Object files versus analog magnitudes. Psychological Science, 13(2), 150–156. doi:10.1111/1467-9280.00427.

    Article  PubMed  Google Scholar 

  • Floyd, R. G., Evans, J. J., & McGrew, K. (2003). Relations between measures of Cattell-Horn-Carroll (CGC) cognitive abilities and mathematics achievement across the school-age years. Psychology in the Schools, 40, 155–171. doi:10.2002/pits.10083.

    Article  Google Scholar 

  • Fuchs, L. S., Fuchs, D., Powell, S. R., Seethaler, P. M., Cirino, P. T., & Fletcher, J. M. (2008). Intensive intervention for students with mathematics disabilities: Seven principles of effective practice. Learning Disability Quarterly, 31(2), 79–92. doi:10.2307/20528819.

    PubMed  PubMed Central  Google Scholar 

  • Gray, S. A., & Reeve, R. A. (2014). Preschoolers’ dot enumeration abilities are markers of their arithmetic competence. PLoS ONE, 9(4), e94428. doi:10.1371/journal.pone.0094428.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hale, J. B., Fiorello, C. A., Miller, J. A., Wenrich, K., Teodori, A., & Hemzel, J. N. (2008). WISC-IV interpretation for specific learning disabilities identification and intervention: A cognitive hypothesis testing approach. In A. Prifitera, D. H. Saklofske, & L. Weiss (Eds.), WISC-IV clinical assessment and intervention (2nd ed., pp. 109–171). New York: Elsevier.

    Google Scholar 

  • Hamak, S., Astilla, J., & Preclaro, H. R. (2015). The acquisition of mathematical skills of Filipino children with learning difficulties: Issues and challenges. In S. Chinn (Ed.), The Routledge international handbook of dyscalculia and mathematical learning difficulties (pp. 203–216). New York: Routledge.

    Google Scholar 

  • Hansen, C. L. (1978). Writing skills. In N. G. Haring, T. C. Lovitt, M. D. Eaton, & C. L. Hansen (Eds.), The fourth R: Research in the classroom (pp. 93–126). Columbus, OH: Merrill.

    Google Scholar 

  • Harris, C. A., Miller, S. P., & Mercer, C. D. (1995). Teaching initial multiplication skills to students with disabilities in general education classrooms. Learning Disabilities Research & Practice, 10(3), 180–195.

    Google Scholar 

  • Henik, A., Rubinsten, O., & Ashkenazi, S. (2011). The “where” and “what” in developmental dyscalculia. The Clinical Neuropsychologist, 25(6), 989–1008. doi:10.1080/13854046.2011.599820.

    Article  PubMed  Google Scholar 

  • Hinshelwood, J. (1917). Congenital word-blindness. London: H. K. Lewis.

    Google Scholar 

  • Hosp, M. K., Hosp, J. L., & Howell, K. W. (2007). The ABCs of CBM: A practical guide to curriculum-based measurement. New York: Guilford Press.

    Google Scholar 

  • Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25), 10382–10385. doi:10.1073/pnas.0812142106.

    Article  Google Scholar 

  • Jordan, N. C., & Dyson, N. (2014). Number sense interventions. Baltimore, MD: Paul H. Brookes.

    Google Scholar 

  • Jordan, N. C., Glutting, J., & Ramineni, C. (2009). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20(2), 82–88. doi:10.1016/j.lindif.2009.07.004.

    Article  Google Scholar 

  • Jordan, N. C., Glutting, J., Ramineni, C., & Watkins, M. W. (2010). Validating a number sense screening tool for use in kindergarten and first grade: Prediction of mathematics proficiency in third grade. School Psychology Review, 39(2), 181–185. Accession Number: 52223870.

    Google Scholar 

  • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early maths matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850–867. doi:10.1037/a0014939.

  • Joseph, L. M., Konrad, M., Cates, G., Vajcner, T., Eveleigh, E., & Fishley, K. M. (2012). A meta-analytic review of the cover-copy-compare and variations of this self-management procedure. Psychology in the Schools, 49(2), 122–136. doi:10.1002/pits.20622.

    Article  Google Scholar 

  • Kaufman, A. S., & Kaufman, N. (2004). Kaufman assessment battery for children (2nd ed.). Circle Pines, MN: American Guidance Service.

    Google Scholar 

  • Kaufman, A. S., & Kaufman, N. (2014). Kaufman test of educational achievement (3rd ed.). Bloomington, MN: NCS Pearson.

    Google Scholar 

  • Kosc, L. (1974). Developmental dyscalculia. Journal of Learning Disabilities, 7(3), 164–177. doi:10.1177/002221947400700309.

    Article  Google Scholar 

  • Krawec, J., Huang, J., Montague, M., Kressler, B., & de Alba, A. M. (2013). The effects of cognitive strategy instruction on knowledge of maths problem-solving processes of middle school students with learning disabilities. Learning Disability Quarterly, 36(2), 80–92. doi:10.1177/0731948712463368.

    Article  Google Scholar 

  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93(2), 99–125. doi:10.1016/j.cognition.2003.11.004.

    Article  PubMed  Google Scholar 

  • Langberg, J. M., Vaughn, A. J., Brinkman, W. B., Froehlich, T., & Epstein, J. N. (2010). Clinical utility of the Vanderbilt ADHD Rating Scale for ruling out comorbid learning disorders. Pediatrics, 126(5), e1033–e1038. doi:10.1542/peds.2010-1267.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtenburger, E. O., & Smith, D. R. (2005). Essentials of WIAT II and KTEA II assessment. New York: Wiley.

    Google Scholar 

  • Locuniak, M. N., & Jordan, N. C. (2008). Using kindergarten number sense to predict calculation fluency in second grade. Journal of Learning Disabilities, 41(5), 451–459. doi:10.1177/0022219408321126.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mabbott, D. J., & Bisanz, J. (2008). Computational skills, working memory, and conceptual knowledge in older children with mathematics learning disabilities. Journal of Learning Disabilities, 41(1), 15–28. doi:10.1177/0022219407311003.

    Article  PubMed  Google Scholar 

  • Maricle, D. E., Psimas-Frazer, L., Muenke, R. C., & Miller, D. C. (2010). Assessing and intervening with children with maths disorders. In D. C. Miller (Ed.), Best practices in school neuropsychology: Guidelines for effective practice, assessment, and evidenced-based intervention (pp. 521–549). Hoboken, NJ: Wiley.

    Google Scholar 

  • Mather, N., Wendling, B. J., & Woodcock, R. W. (2001). Essentials of WJ III tests of achievement assessment. New York: Wiley.

    Google Scholar 

  • Mayes, S. D., & Calhoun, S. L. (2007). Wechsler Intelligence Scale for Children—third and fourth edition predictors of academic achievement in children with attention-deficit/hyperactivity disorder. School Psychology Quarterly, 22(2), 234–249. doi:10.1037/1045-3830.22.2.234.

    Article  Google Scholar 

  • Mazzocco, M. M., & Kover, S. T. (2007). A longitudinal assessment of executive function skills and their association with maths performance. Child Neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence, 13(1), 18–45. doi:10.1080/09297040600611346.

    Article  Google Scholar 

  • McGrew, K. S. (2005). The Cattell–Horn–Carroll theory of cognitive abilities: Past, present, and future. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (2nd ed., pp. 136−181). New York: Guilford Press.

    Google Scholar 

  • McGrew, K., & Flanagan, D. (1998). The intelligence test desk reference (ITDR): Gf-Gc cross-battery assessment. Boston: Allyn & Bacon.

    Google Scholar 

  • McGuigan, C. A. (1975). The add-a-word spelling program (Working Paper No. 53). Seattle: University of Washington, Experimental Education Unit.

    Google Scholar 

  • Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learning and Individual Differences, 20(2), 101–109. doi:10.1016/j.lindif.2009.08.004Miles.

  • Miles, T. R., & Miles, E. (1992). Dyslexia and mathematics. New York: Routledge.

    Google Scholar 

  • Miller, C. J., & Hynd, G. W. (2004). What ever happened to developmental Gerstmann’s syndrome? Links to other pediatric, genetic, and neurodevelopmental syndromes. Journal of Child Neurology, 19(4), 282–289. doi:10.1177/088307380401900408.

    Article  PubMed  Google Scholar 

  • Miranda, A., Soriano, M., Fernández, I., & Meliá, A. (2008). Emotional and behavioral problems in children with attention deficit-hyperactivity disorder: Impact of age and learning disabilities. Learning Disability Quarterly, 31(4), 171–185. doi:10.2307/25474650.

    Google Scholar 

  • Montague, M. (2003). Solve it! A practical approach to teaching mathematical problem solving skills. Reston, VA: Exceptional Innovations.

    Google Scholar 

  • Montague, M. (2007). Self-regulation and mathematics instruction. Learning Disabilities Research & Practice, 22(1), 75–83. doi:10.1111/j.1540-5826.2007.00232.x.

    Article  Google Scholar 

  • Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208. doi:10.1146/annurev.neuro.051508.135550.

    Article  PubMed  Google Scholar 

  • OECD. (2010). Factbook 2010: Economic, environmental and social statistics. Paris: Organization for Economic Cooperation and Development.

    Book  Google Scholar 

  • Ostad, A., & Sorenson, P. M. (2007). Private speech and strategy-use patterns: Bidirectional comparisons of students with and without mathematical disabilities in a developmental perspective. Journal of Learning Disabilities, 40(1), 2–14. doi:10.1177/00222194070400010101.

    Article  PubMed  Google Scholar 

  • Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: National Research and Development Centre for Adult Literacy and Numeracy. ISBN 1 90 5188 09 9.

    Google Scholar 

  • Paterson, S. J., Girelli, L., Butterworth, B., & Karmiloff‐Smith, A. (2006). Are numerical impairments syndrome specific? Evidence from Williams syndrome and Down’s syndrome. Journal of Child Psychology and Psychiatry, 47(2), 190–204. doi:10.1111/j.1469-7610.2005.01460.x.

    Article  PubMed  Google Scholar 

  • Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17(24), R1042–R1043. doi:10.1016/j.cub.2007.10.013.

    Article  PubMed  Google Scholar 

  • Reeve, R., & Gray, S. (2015). Number difficulties in young children: Deficits in core number? In S. Chinn (Ed.), The Routledge international handbook of dyscalculia and mathematical learning difficulties (pp. 44–59). New York: Routledge.

    Google Scholar 

  • Reeve, R., & Humberstone, J. (2011). Five-to 7-year-olds’ finger gnosia and calculation abilities. Frontiers in Psychology, 2, 359. doi:10.3389/fpsyg.2011.00359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reeve, R. A., & Humberstone, J. (2012). Dyscalculia in Young Children: Cognitive and Neurological Bases. In N. M. Seel (Ed). Encyclopaedia of the Sciences of Learning (pp. 1062-1065). New York: Springer. Doi: 10. 1007/978-1-4419-428-6_725.

    Google Scholar 

  • Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in markers of core numerical competencies. Journal of Experimental Psychology: General, 141(4), 649–666. doi:10.1037/a0027520.

    Article  Google Scholar 

  • Reigosa-Crespo, V., & Castro, D. (2015). Dots and digits: How do children process the numerical magnitude? Evidence from brain and behaviour. In S. Chinn (Ed.), The Routledge international handbook of dyscalculia and mathematical learning difficulties (pp. 115–124). New York: Routledge.

    Google Scholar 

  • Rodic, M., Zhou, Z., Tikhomirova, T., Wei, W., Malykh, S., Ismatulina, V., Sabirova, E., Davidova, Y., Tosto M. G., Lemelin, J-P, & Kovas, Y. (2015). Cross-cultural investigation into cognitive underpinnings of individual differences in early arithmetic. Developmental Science, 18, 165–174. DOI: 10.1111/desc.12204

    Google Scholar 

  • Rosenzweig, C., Krawec, J., & Montague, M. (2011). Metacognitive strategy use of eighth grade students with and without learning disabilities during mathematical problem solving: A think aloud analysis. Journal of Learning Disabilities, 44(6), 508–520. doi:10.1177/0022219410378445.

    Article  PubMed  Google Scholar 

  • Rourke, B. P. (1995). Syndrome of nonverbal learning disabilities: Neurodevelopmental manifestations. New York: Guilford Press.

    Google Scholar 

  • Rourke, B. P., & Strang, J. D. (1978). Neuropsychological significance of variations in patterns of academic performance: Motor, psychomotor, and tactile-perceptual abilities. Journal of Pediatric Psychology, 3(2), 62–66. doi:10.1093/jpepsy/3.2.62.

    Article  Google Scholar 

  • Schrank, F. A., McGrew, K. S., & Mather, N. (2014a). Woodcock Johnson IV tests of cognitive abilities. Rolling Meadows, IL: Riverside Publishing.

    Google Scholar 

  • Schrank, F. A., McGrew, K. S., & Mather, N. (2014b). Woodcock Johnson IV tests of achievement. Rolling Meadows, IL: Riverside Publishing.

    Google Scholar 

  • Schrank, F. A., McGrew, K. S., & Mather, N. (2015). Woodcock Johnson IV early cognitive and academic development. Rolling Meadows, IL: Riverside.

    Google Scholar 

  • Shapiro, E. S. (2004). Academic skills problems: Direct assessment and intervention (3rd ed.). New York: Guilford Press.

    Google Scholar 

  • Simon, T. J., Bearden, C. E., Mc-Ginn, D. M., & Zackai, E. (2005). Visuospatial and numerical cognitive deficits in children with chromosome 22q11.2 deletion syndrome. Cortex, 41(2), 145–155. doi:10.1016/S0010-9452(08)70889-X.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skinner, C. H., Turco, T. L., Beatty, K. L., & Rasavage, C. (1989). Cover, copy, and compare: A method for increasing multiplication performance. School Psychology Review, 18, 412–420.

    Google Scholar 

  • Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Infants show ratio‐dependent number discrimination regardless of set size. Infancy, 18(6), 927–941. doi:10.1111/infa.12008.

    Article  Google Scholar 

  • Temple, C. (1997). Developmental cognitive neuropsychology. Hove, Sussex: Psychology Press.

    Google Scholar 

  • Tosto, M. G., Hanscombe, K. B., Haworth, C. M. A., Davis, O. S. P., Petrill, S. A., Dale, P. S., Malykh, S., Plomin, R., & Kovas. (2014). Why do spatial abilities predict mathematical performance? Developmental Science, 17, 462–470. DOI: 10.1111/desc.12138.

    Google Scholar 

  • Wang, M., & Eccles, J. S. (2011). Adolescent behavioral, emotional, and cognitive engagement trajectories in school and their differential relations to educational success. Journal of Research on Adolescence, 22(1), 31–39. doi:10.1111/j.1532-7795.2011.00753.x.

    Article  Google Scholar 

  • Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: Harcourt Assessment.

    Google Scholar 

  • Wechsler, D. (2009). Wechsler individual achievement test (3rd ed.). San Antonio, TX: Harcourt Assessment.

    Google Scholar 

  • Wechsler, D. (2012). Wechsler preschool and primary scale of intelligence (4th ed.). San Antonio, TX: NCS Pearson.

    Google Scholar 

  • Wechsler, D. (2014). Wechsler intelligence scale for children (5th ed.). San Antonio, TX: NCS Pearson.

    Google Scholar 

  • Wilson, A. J., Andrewes, S. G., Struthers, H., Rowe, V. M., Bogdanovic, R., & Waldie, K. E. (2015). Dyscalculia and dyslexia in adults: Cognitive bases of comorbidity. Learning and Individual Differences, 32, 118–132. doi: 10.1016/j.lindif.2014.11.017.

  • Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson, & K. Fischer (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 212–238). New York: Guilford.

    Google Scholar 

  • Woodcock, R. W., McGrew, K. S., & Mather, N. (2001a). Woodcock-Johnson III tests of cognitive abilities. Itasca, IL: Riverside Publishing.

    Google Scholar 

  • Woodcock, R. W., McGrew, K. S., & Mather, N. (2001b). Woodcock-Johnson III tests of achievement. Itasca, IL: Riverside Publishing.

    Google Scholar 

  • Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11. doi:10.1111/infa.12008.

    Article  PubMed  Google Scholar 

  • Zheng, X., Swanson, H. L., & Marcoulides, G. A. (2011). Working memory components as predictors of children’s mathematical word problem solving. Journal of Experimental Child Psychology, 110, 481–498. doi: 10.1016/j.jeco.2011.06/001.

  • Zhou, X., & Cheng, D. (2015). When and why numerosity processing is associated with developmental dyscalculia. In S. Chinn (Ed.), The Routledge International Handbook of dyscalculia and mathematical learning difficulties (pp. 115–124). New York: Routledge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn Waldecker Psy.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reeve, R.A., Waldecker, C. (2017). Evidence-Based Assessment and Intervention for Dyscalculia and Maths Disabilities in School Psychology. In: Thielking, M., Terjesen, M. (eds) Handbook of Australian School Psychology. Springer, Cham. https://doi.org/10.1007/978-3-319-45166-4_10

Download citation

Publish with us

Policies and ethics