Skip to main content

The New Graph Kernels on Connectivity Networks for Identification of MCI

  • Conference paper
  • First Online:
Machine Learning and Interpretation in Neuroimaging (MLINI 2013, MLINI 2014)

Abstract

Brain connectivity networks have been applied recently to brain disease diagnosis and classification. Especially for both functional and structural connectivity interaction, graph theoretical analysis provided a new measure for human brain organization in vivo, with one fundamental challenge that is how to define the similarity between a pair of graphs. As one kind of similarity measure for graphs, graph kernels have been widely studied and applied in the literature. However, few works exploit to construct graph kernels for brain connectivity networks, where each node corresponds a unique EEG electrode or regions of interest(ROI). Accordingly, in this paper, we construct a new graph kernel for brain connectivity networks, which takes into account the inherent characteristic of nodes and captures the local topological properties of brain connectivity networks. To validate our method, we have performed extensive evaluation on a real mild cognitive impairment (MCI) dataset with the baseline functional magnetic resonance imaging (fMRI) data from Alzheimers disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the efficacy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie, T., He, Y.: Mapping the Alzheimer’s brain with connectomics. Front Psychiatry 2, 77 (2011)

    Google Scholar 

  2. Wang, J., Zuo, X., Dai, Z., Xia, M., Zhao, Z., Zhao, X., Jia, J., Han, Y., He, Y.: Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biol. Psychiatry 73, 472–481 (2012)

    Article  Google Scholar 

  3. Bai, F., Shu, N., Yuan, Y.G., Shi, Y.M., Yu, H., Wu, D., Wang, J.H., Xia, M.R., He, Y., Zhang, Z.J.: Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. J. Neurosci. 32, 4307–4318 (2012)

    Article  Google Scholar 

  4. Pievani, M., Agosta, F., Galluzzi, S., Filippi, M., Frisoni, G.B.: Functional networks connectivity in patients with Alzheimer’s disease and mild cognitive impairment. J. Neurol. 258, 170–170 (2011)

    Google Scholar 

  5. Sporns, O., Tononi, G., Kotter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, 245–251 (2005)

    Article  Google Scholar 

  6. Kaiser, M.: A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57, 892–907 (2011)

    Article  Google Scholar 

  7. Wee, C.Y., Yap, P.T., Li, W., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Enriched white matter connectivity networks for accurate identification of MCI patients. Neuroimage 54, 1812–1822 (2011)

    Article  Google Scholar 

  8. Scholkopf, B., Smola, A.: Learning with Kernels. The MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  9. Shrivastava, A., Li, P.: A new mathematical space for social networks. In: Frontiers of Network Analysis: Methods, Models, and Applications, NIPS Workshop, pp. 1–7. MIT Press (2013)

    Google Scholar 

  10. Camps-Valls, G., Shervashidze, N., Borgwardt, K.M.: Spatio-spectral remote sensing image classification with graph kernels. IEEE Geosci. Remote Sens. Lett. 7, 741–745 (2010)

    Article  Google Scholar 

  11. Zhang, Y., Lin, H., Yang, Z., Li, Y.: Neighborhood hash graph kernel for protein-protein interaction extraction. J. Biomed. Inform. 44, 1086–1092 (2011)

    Article  Google Scholar 

  12. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Fifth IEEE International Conference on Data Mining, pp. 74–81 (2005)

    Google Scholar 

  13. Johansson, F.D., Jethava, V., Dubhashi, D., Bhattacharyya, C.: Global graph kernels using geometric embedding. In: Proceedings of the 31st International Conference on Machine Learning, vol. 23, pp. 1–9 (2014)

    Google Scholar 

  14. Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Shervashidze, N., Borgwardt, K.M.: Fast subtree kernels on graphs. In: Advances in Neural Information Processing Systems, vol. 22, pp. 1660–1668 (2009)

    Google Scholar 

  17. Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., Borgwardt, K.: Scalable kernels for graphs with continuous attributes. In: Advances in Neural Information Processing Systems, pp. 216–224 (2013)

    Google Scholar 

  18. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Van Dijk, K.R., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., Buckner, R.L.: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J. Neurophysiol. 103, 297–321 (2010)

    Article  Google Scholar 

  20. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)

    Article  Google Scholar 

  21. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55, 856–867 (2011)

    Article  Google Scholar 

  22. Lenzi, D., Serra, L., Perri, R., Pantano, P., Lenzi, G.L., Paulesu, E., Caltagirone, C., Bozzali, M., Macaluso, E.: Single domain amnestic MCI: a multiple cognitive domains fMRI investigation. Neurobiol. Aging 32, 1542–1557 (2011)

    Article  Google Scholar 

  23. Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., He, Y., Jia, J.: Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. Neuroimage 55, 287–295 (2011)

    Article  Google Scholar 

  24. Nobili, F., Salmaso, D., Morbelli, S., Girtler, N., Piccardo, A., Brugnolo, A., Dessi, B., Larsson, S.A., Rodriguez, G., Pagani, M.: Principal component analysis of FDG PET in amnestic MCI. Eur. J. Nucl. Med. Mol. I(35), 2191–2202 (2008)

    Article  Google Scholar 

Download references

Acknowledegment

This work was supported in part by National Natural Science Foundation of China (Nos. 61422204, 61473149), the Jiangsu Natural Science Foundation for Distinguished Young Scholar (No. BK20130034), the NUAA Fundamental Research Funds (No. NE2013105), Natural Science Foundation of Anhui Province (No. 1508085MF125), the Open Projects Program of National Laboratory of Pattern Recognition (No. 201407361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoqiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Jie, B., Jiang, X., Zu, C., Zhang, D. (2016). The New Graph Kernels on Connectivity Networks for Identification of MCI. In: Rish, I., Langs, G., Wehbe, L., Cecchi, G., Chang, Km., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. MLINI MLINI 2013 2014. Lecture Notes in Computer Science(), vol 9444. Springer, Cham. https://doi.org/10.1007/978-3-319-45174-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45174-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45173-2

  • Online ISBN: 978-3-319-45174-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics