Skip to main content

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

All problems inherent to models’ imperfection and generally insufficient vertical and horizontal resolution, as well as inability to obtain full and accurate initial and boundary conditions, amplify for fog predictions. This is due to a huge span of relevant parameters and processes ranging from aerosols to hemispheric synoptic conditions. Understanding fog characteristics and evolution as well as constructing accurate initial and boundary conditions for forecasting is severely hindered by absence of dense routine and also special measurements over the vast oceans. Fog modeling and forecasting has a long history from early methods based on persistence and synoptic indicators and later through weather analysis to contemporary methods using high-resolution numerical models on regional scales, mesoscales, and microscales. The main issues that are critical to understanding and forecasting marine fog include synoptic conditions and advection, local circulations and flow properties, turbulence, characteristics of inversion and subsidence, longwave and shortwave radiative fluxes, air-sea interaction, aerosols, microphysics, and coastal topography. The two main approaches to fog predictions are statistical and dynamical forecasting methods. Some of the statistical methods are based on various statistical analyses including regressions, correlations, classifications, and tree decision diagrams. Additional statistical methods include artificial neural networks and fuzzy logic, which can successfully treat nonlinear relationships between fog predictors and predictands. The statistical methods are applicable and useful when there is a sufficient archive of fog predictor parameters and fog observations at a location of interest. An advantage of using statistical methods is their computational efficiency allowing for fog nowcasting as an independent tool or in conjunction with operational forecasting models. A disadvantage is that the statistical approach does not take into account the actual three-dimensional weather structure and evolution. Dynamical models for fog forecasting use mathematical representations of basic conservation laws and parameterizations of physical processes including the ones relevant to fog. Early research in numerical studies has used one- (1D) and two-dimensional (2D) models, which can allow for high vertical resolutions and detailed parameterization schemes. Since 1D and 2D models cannot represent the full structure and evolution of atmospheric processes, three-dimensional (3D) models have been used for operational weather forecasts. An important objective of 3D modeling studies is understanding the path history of an air mass transformation that leads to fog or fog-free conditions. Some of the main drawbacks of 3D models include the high computational requirements, which usually result in inadequate horizontal and vertical resolution, and simplifications in physics parameterization schemes. It is obviously best to use the advantages of each of these types of models and to combine them into an integrated modeling system that can improve the accuracy of the forecast. Further improvement in marine fog forecasting is obtained by treating air-sea interaction with coupled atmospheric and ocean models. Besides a deterministic approach with a single fog forecast outcome, probabilistic methods based on an ensemble of solutions are emerging. The probabilistic forecasts are able to reveal uncertainties due to the initial and boundary conditions, physics parameterizations, and model structure and setup. Advanced modeling approaches such as the large-eddy simulation (LES) technique has been also used for fog predictions. LES can simulate high-resolution atmospheric fields including turbulence on limited domains, however, they have limitations in representing realistic synoptic processes. With the rapid development of measurement networks, and especially with satellite data, it has been shown that assimilation of data into the models can significantly improve the forecast accuracy. Although initially fog forecasts were developed and applied to marine areas of North America and Europe, it is encouraging that various fog forecasting methods are being developed and applied to marine areas of other continents. Of definite interest is to estimate projections of fog characteristics using regional climate models that are recently under rapid developments. In spite of their uncertainties in initial and boundary conditions as well as in emissions of aerosols and greenhouse gases, limited resolutions, and generally simplified physics parameterizations, they are valuable tools in assessing meteorological parameters relevant to future fog occurrence and evolution.

Due to the complex structure and evolution of marine fog as well as the generally significant influence of microlocations on fog processes, many studies show that a subjective forecaster’s experience still represents a valuable component in the final creation of an accurate fog forecast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballard, S., Golding, B., & Smith, R. (1991). Mesoscale model experimental forecasts of the haar of northeast Scotland. Monthly Weather Review, 191, 2107–2123.

    Article  Google Scholar 

  • Bari, D., Bergot, T., & El Khlifi, M. (2015). Numerical study of a coastal fog event over Casablanca, Morocco. Quarterly Journal of the Royal Meteorological Society, 141, 1894–1905.

    Article  Google Scholar 

  • Barker, E. (1977). A maritime boundary-layer model for the prediction of fog. Boundary-Layer Meteorology, 11, 267–294.

    Article  Google Scholar 

  • Bartok, B., Bott, A., & Gera, M. (2012). Fog prediction for road traffic safety in a coastal desert region. Boundary-Layer Meteorology, 145(3), 485–506.

    Article  Google Scholar 

  • Bayler, G., & Lewit, H. (1992). The Navy Operational Global and Regional Atmospheric Prediction Systems at the Fleet Numerical Oceanography Center. Weather and Forecasting, 7, 273–279. doi:10.1175/1520-0434(1992)007<0273:TNOGAR>2.0.CO;2.

    Article  Google Scholar 

  • Benoit, R., Desgagne, J. M., Pellerin, P., Pellerin, S., Chartier, Y., & Desjardins, S. (1997). The Canadian Mc2: A semi-Lagrangian, semi-implicit wide band atmospheric model suited for fine scale process studies and simulation. Monthly Weather Review, 125, 2382–2415.

    Article  Google Scholar 

  • Benz, R. F. (2003). Data mining atmospheric/oceanic parameters in the design of a long-range nephelometric forecast tool. Master’s Thesis, Department of Engineering Physics, Air Force Institute of Technology, pp. 42–47.

    Google Scholar 

  • Bonancina, L. C. W. (1925). Notes on the fog of January 10th–12th, 1925. Meteorological Magazine, 60, 7–8.

    Google Scholar 

  • Bott, A., & Trautmann, T. (2002). PAFOG—A new efficient forecast model of radiation fog and low-level stratiform clouds. Atmospheric Research, 64(1–4), 191–203.

    Article  Google Scholar 

  • Cho, Y.-K., Kim, M.-O., & Kim, B.-C. (2000). Sea fog around the Korean Peninsula. Journal of Applied Meteorology, 39, 2473–2479.

    Article  Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.

    Article  Google Scholar 

  • Dorman, C. E. (2017). Early and recent observational techniques for fog (Chap. 3). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.

    Google Scholar 

  • Dorman, C. E., Mejia, J., Koračin, D., & McEvoy, D. (2017). Worlwide marine fog occurrence and climatology (Chap. 2). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.

    Google Scholar 

  • Douglas, C. (1930). Cold fogs over the sea. Meteorological Magazine, 65, 133–135.

    Google Scholar 

  • Du, J., & Zhou, B. (2017). Ensemble fog prediction (Chap. 10). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.

    Google Scholar 

  • Edson, J., Crawford, T., Crescenti, J., Farrar, T., Frew, N., Gerbi, G., et al. (2007). The coupled boundary layers and air–sea transfer experiment in low winds. Bulletin of the American Meteorological Society, 88, 341–356. doi:10.1175/BAMS-88-3-341.

    Article  Google Scholar 

  • Ellrod, G. P. (1995). Advances in the detection and analysis of fog at night using GOES multi-spectral infrared imagery. Weather and Forecasting, 10, 606–619.

    Article  Google Scholar 

  • Emmons, G., & Montgomery, R. B. (1947). Note on the physics of fog formation. Journal of Meteorology, 4, 206.

    Article  Google Scholar 

  • Filonczuk, M. K., Cayan, D. I. R., & Riddle, L. G. (1995). Variability of marine fog along the California coast. SIO-Reference, No 95-2. Climate Research Division, Scripps Institution of Oceanography, University of California, San Diego. Retrieved from http://www.escholarship.org/uc/item/2kc7x97f#page-1

  • Findlater, J., Roach, W., & McHugh, B. (1989). The haar of north-east Scotland. Quarterly Journal of the Royal Meteorological Society, 115, 581–608.

    Article  Google Scholar 

  • Fisher, E. L., & Caplan, P. (1963). An experiment in numerical prediction of fog and stratus. Journal of the Atmospheric Sciences, 20, 425–437.

    Article  Google Scholar 

  • Fitzgerald, J. W. (1978). A numerical model of the formation of droplet spectra in advection fogs at sea and its applicability to fogs off Nova Scotia. Journal of the Atmospheric Sciences, 35, 1522–1535.

    Article  Google Scholar 

  • Gao, S., Lin, H., Shen, B., & Fu, G. (2007). A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling. Advances in Atmospheric Sciences, 24, 65–81.

    Article  Google Scholar 

  • Garland, J. A. (1971). Some fog droplet size distributions obtained by an impaction method. Quarterly Journal of the Royal Meteorological Society, 97, 483–494.

    Article  Google Scholar 

  • Garreaud, R., Barichivich, J., Christie, D. A., & Maldonado, A. (2008). Interannual variability of the coastal fog at Fray Jorge relict forests in semiarid Chile. Journal of Geophysical Research: Biogeosciences, 113(G4), 2005–2012.

    Google Scholar 

  • Glahn, H. R., & Dallavalle, J. P. (2002). The new NWS MOS development and implementation systems. Preprints. In 16th Conference on Probability and Statistics in the Atmospheric Sciences (pp. 78–81). Orlando, FL: American Meteorological Society.

    Google Scholar 

  • Glahn, H. R., & Lowry, D. A. (1972). The use of model output statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology, 11, 1202–1211.

    Google Scholar 

  • Golding, B. W. (1987). The U.K. Meteorological Office mesoscale model. Boundary-Layer Meteorology, 41, 97–107.

    Article  Google Scholar 

  • Grell, G. A., Dudhia, J., & Stauffer, D. R. (1994). A description of the fifth-generation Penn state/NCAR Mesoscale Model (MM5) (NCAR Tech. Note NCAR/TN-398+STR, 122pp).

    Google Scholar 

  • Gultepe, I., & Milbrandt, J. A. (2007). Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project. Pure and Applied Geophysics, 164, 1161–1178.

    Article  Google Scholar 

  • Gultepe, I., Müller, M. D., & Boybeyi, Z. (2006). A new warm fog parameterization scheme for numerical weather prediction models. Journal of Applied Meteorology, 45, 1469–1480.

    Article  Google Scholar 

  • Gultepe, I., Milbrandt, J. A., & Zhou, B. (2017). Marine fog: A review on microphysics and visibility prediction (Chap. 7). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.

    Google Scholar 

  • Gultepe, I., Pearson, G., Milbrandt, J. A., Hansen, B., Platnick, S., Taylor, P., et al. (2009). The fog remote sensing and modeling (FRAM) field project. Bulletin of the American Meteorological Society, 90, 341–359.

    Article  Google Scholar 

  • Gultepe, I., Tardif, R., Michaelides, S. C., Cermak, J., Bott, A., Bendix, J., et al. (2007). Fog research: A review of past achievements and future perspectives. Pure and Applied Geophysics, 164, 1121–1159.

    Article  Google Scholar 

  • Gutiérrez, A. G., Barbosa, O., Christie, D. A., del-Val, E., Ewing, H. A., Jones, C. G., et al. (2008). Regeneration patterns and persistence of the fog dependent Fray Jorge forest in semiarid Chile during the past two centuries. Global Change Biology, 14, 161–176. doi:10.1111/j.13652486.2007.01482.x.

    Google Scholar 

  • Heo, K.-Y., & Ha, K.-J. (2010). A coupled model study on the formation and dissipation of sea fogs. Monthly Weather Review, 138, 1186–1205.

    Article  Google Scholar 

  • Heo, K.-Y., Ha, K. J., Mahrt, L., & Shim, J.-S. (2010). Comparison of advection and steam fogs: From direct observation over the sea. Atmospheric Research, 98, 426–437. doi:10.1016/j.atmosres.2010.08.004.

    Article  Google Scholar 

  • Hodur, R. M. (1997). The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Monthly Weather Review, 125, 1414–1430.

    Article  Google Scholar 

  • Hodur, R. M., Hong, X., Doyle, J. D., Pullen, J., Cummings, J., Martin, P., et al. (2002). The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Oceanography, 15, 88–98.

    Article  Google Scholar 

  • Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed., p. 375). Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Huang, H., Huang, J., Liu, C., Yuan, J., Mao, W., & Liao, F. (2011). Prediction of sea fog of Guangdong coastland using the variable factors output by GRAPES model. Journal of Tropical Meteorology, 17, 166–174.

    Google Scholar 

  • Huang, H., Liu, H., Huang, J., Mao, W., & Bi, X. (2015). Atmospheric boundary layer structure and turbulence during sea fog on the southern China Coast. Monthly Weather Review, 143, 1907–1923. doi:10.1175/MWR-D-14-00207.1.

    Article  Google Scholar 

  • Huang, H., Liu, H., Jiang, W., Huang, J., & Mao, W. (2011). Characteristics of the boundary layer structure of sea fog on the coast of Southern China. Advances in Atmospheric Sciences, 28(6), 1377–1389.

    Article  Google Scholar 

  • Hudson, J. G. (1980). Relationship between fog condensation nuclei and fog microstructure. Journal of the Atmospheric Sciences, 37, 1854–1867.

    Article  Google Scholar 

  • Ishida, H., Miura, M., Matsuda, T., Ogawara, K., Goto, A., Matsuura, K., et al. (2014). Investigation of low-cloud characteristics using mesoscale numerical model data for improvement of fog-detection performance by satellite remote sensing. Journal of Applied Meteorology and Climatology, 53, 2246–2263.

    Article  Google Scholar 

  • Johnstone, J. A., & Dawson, T. E. (2010). Climatic context and ecological implications of summer fog decline in the coast redwood region. PNAS, 107(10), 4533–4538. doi:10.1073/pnas.0915062107.

    Article  Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77, 437–471.

    Article  Google Scholar 

  • Kim, C.-K., & Yum, S.-S. (2010). Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the west coast of Korea. Advances in Atmospheric Sciences, 27, 761–776.

    Article  Google Scholar 

  • Kim, C.-K., & Yum, S.-S. (2012). A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the weather research and forecasting model. Boundary-Layer Meteorology, 143, 481–505.

    Article  Google Scholar 

  • Kim, C. K., & Yum, S. S. (2017a). Turbulence in marine fog (Chap. 4). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.

    Google Scholar 

  • Kim, C. K., & Yum, S. S. (2017b). Radiation in marine fog (Chap. 5). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.

    Google Scholar 

  • Koračin, D., Businger, J. A., Dorman, C. E., & Lewis, J. M. (2005). Formation, evolution, and dissipation of coastal sea fog. Boundary-Layer Meteorology, 117, 447–478.

    Article  Google Scholar 

  • Koračin, D., Dorman, C. E., Lewis, J. M., Hudson, J. G., Wilcox, E. M., & Torregrosa, A. (2014). Marine fog: A review. Atmospheric Research, 143, 142–175.

    Article  Google Scholar 

  • Koračin, D., Dorman, C. E., & Dever, E. P. (2004). Coastal perturbations of marine layer winds, wind stress, and wind stress curl along California and Baja California in June 1999. Journal of Physical Oceanography, 34, 1152–1173.

    Article  Google Scholar 

  • Koračin, D., Leipper, D. F., & Lewis, J. M. (2005). Modeling sea fog on the U.S. California coast during a hot spell event. Geofizika, 22, 59–82.

    Google Scholar 

  • Koračin, D., Lewis, J., Thompson, W. T., Dorman, C. E., & Businger, J. A. (2001). Transition of stratus into fog along the California coast: Observations and modeling. Journal of the Atmospheric Sciences, 58, 1714–1731.

    Article  Google Scholar 

  • Kunkel, B. A. (1984). Parameterization of droplet terminal velocity and extinction coefficient in fog models. Journal of Climate and Applied Meteorology, 23, 34–41.

    Article  Google Scholar 

  • Leipper, D. (1948). Fog development at San Diego, California. Journal of Marine Research, 7, 337–346.

    Google Scholar 

  • Leipper, D. F. (1994). Fog on the U.S. West Coast, a review. Bulletin of the American Meteorological Society, 72, 229–240.

    Article  Google Scholar 

  • Lewis, D. M. (2004). Forecasting advective sea fog with the use of classification and regression tree analysis for Kunsan Air Base. M.S. thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH. Retrieved from http://www.dtic.mil/dtic/tr/fulltext/u2/a422963.pdf.

  • Lewis, J. M., Koračin, D., & Redmond, K. T. (2004). Sea fog research in the United Kingdom and United States: A historical essay including outlook. Bulletin of the American Meteorological Society, 85, 395–408.

    Article  Google Scholar 

  • Li, P., Fu, G., Lu, C., Fu, D., & Wang, S. (2012). The formation mechanism of a spring sea fog event over the Yellow Sea associated with a low-level jet. Weather and Forecasting, 27, 1538–1553.

    Article  Google Scholar 

  • Marzban, C., Leyton, S., & Colman, B. (2007). Ceiling and visibility forecasts via neural nets. Weather and Forecasting, 22(3), 466–479.

    Article  Google Scholar 

  • Mensbrugghe, V. (1892). The formation of fog and of clouds, translated from Ciel et Terre. Symons’s Monthly Meteorological Magazine, 27, 40–41.

    Google Scholar 

  • Miao, Y., Potts, R., Huang, X., Elliot, G., & Rivett, R. (2012). A fuzzy logic fog forecasting model for Perth airport. Pure and Applied Geophysics, 169, 1107–1119.

    Article  Google Scholar 

  • Milbrandt, J. A., & Yau, M. K. (2005a). A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. Journal of the Atmospheric Sciences, 62, 3051–3064.

    Article  Google Scholar 

  • Milbrandt, J. A., & Yau, M. K. (2005b). A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. Journal of the Atmospheric Sciences, 62, 3065–3081.

    Article  Google Scholar 

  • Nakanishi, M. (2000). Large-eddy simulation of radiation fog. Boundary-Layer Meteorology, 94, 461–493.

    Article  Google Scholar 

  • Neumann, J. (1989). Forecasts of fine weather in the literature of classical antiquity. Bulletin of the American Meteorological Society, 70, 46–48.

    Google Scholar 

  • O’Brien, T. A., Chuang, P. Y., Sloan, L. C., Faloona, I. C., & Rossiter, D. L. (2012). Coupling a new turbulence parametrization to RegCM adds realistic stratocumulus clouds. Geoscience Model Development, 5(4), 989–1008.

    Article  Google Scholar 

  • O’Brien, T. A., Sloan, L. C., Chuang, P. Y., Faloona, I. C., & Johnstone, J. A. (2013). Multidecadal simulation of coastal fog with a regional climate model. Climate Dynamics, 40, 2801–2812.

    Article  Google Scholar 

  • Oliver, D., Lewellen, W., & Williamson, G. (1978). The interaction between turbulent and radiative transport in the development of fog and low-level stratus. Journal of the Atmospheric Sciences, 35, 301–316.

    Article  Google Scholar 

  • Pagowski, M., Gultepe, I., & King, P. (2004). Analysis and modeling of an extremely dense fog event in Southern Ontario. Journal of Applied Meteorology, 43, 3–16. doi:10.1175/1520-0450(2004)043b0003:AAMOAEN2.0.CO;2.

    Article  Google Scholar 

  • Petterssen, S. V. (1936). On the causes and forecasting of the California fog. Journal of the Aeronautical Sciences, 3, 305–309.

    Article  Google Scholar 

  • Petterssen, S. V. (1938). On the causes and forecasting of the California fog. Bulletin of the American Meteorological Society, 19, 49–55.

    Google Scholar 

  • Petterssen, S. (1939). Some aspects of formation and dissipation of fog. Geofysiske Publikasjoner, 12, 15–22.

    Google Scholar 

  • Pilié, R. J., Mack, E. J., Rogers, C. W., Katz, U., & Kocmond, W. C. (1979). The formation of marine fog and the development of fog-stratus systems along the California coast. Journal of Applied Meteorology, 18, 1275–1286.

    Article  Google Scholar 

  • Roach, W., Brown, R., Caughey, S. J., Garland, J. A., & Readings, C. J. (1976). The physics of radiation fog: I—A field study. Quarterly Journal of the Royal Meteorological Society, 102, 313–333.

    Google Scholar 

  • Scott, R. H. (1894). Fogs reported with strong winds during the 15 years 1876–90 in the British Isles. Quarterly Journal of the Royal Meteorological Society, 20(92), 253–262.

    Article  Google Scholar 

  • Shchepetkin, A. F., & McWilliams, J. C. (2004). The regional oceanic modeling system: A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modelling, 9, 347–404.

    Article  Google Scholar 

  • Skamarock, W., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., et al. (2008). A Description of the Advanced Research WRF Version 3 (NCAR Technical Note NCAR/TN-475+STR). doi:10.5065/D68S4MVH.

  • Stage, S. A., & Businger, J. A. (1981). A model for entrainment into a cloud-topped marine boundary-layer. Part II: Discussion of model behaviour and comparison with other models. Journal of the Atmospheric Sciences, 38, 2230–2242.

    Google Scholar 

  • Tang, Y. (2012). The effect of variable sea surface temperature on forecasting sea fog and sea breezes: A case study. Journal of Applied Meteorology and Climatology, 51, 986–990.

    Article  Google Scholar 

  • Tardif, R., & Rasmussen, R. M. (2007). Event-based climatology and typology of fog in the New York City region. Journal of Applied Meteorology and Climatology, 46(8), 1141–1168.

    Article  Google Scholar 

  • Tardif, R., & Rasmussen, R. M. (2008). Process-oriented analysis of environmental conditions associated with precipitation fog events in the New York City region. Journal of Applied Meteorology and Climatology, 47, 1681–1703.

    Article  Google Scholar 

  • Tardif, R. (2017). Precipitation and fog (Chap. 8). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.

    Google Scholar 

  • Taylor, G. I. (1917). The formation of fog and mist. Quarterly Journal of the Royal Meteorological Society, 43, 241–268.

    Article  Google Scholar 

  • Teixeira, J., & Miranda, P. M. A. (2001). Fog prediction at Lisbon airport using a one-dimensional boundary layer model. Meteorological Applications, 8, 497–505.

    Article  Google Scholar 

  • Thompson, W. T., Burk, S. D., & Lewis, J. (2005). Fog and low clouds in a coastally trapped disturbance. Journal of Geophysical Research, 110, D18213.

    Article  Google Scholar 

  • U.S. Department of Agriculture. (1938). Atlas of the climatic charts of the oceans. Publication No. 1247, Prepared under the supervision of W. F. McDonald, 130 charts. U.S. Weather Bureau.

    Google Scholar 

  • van Schalkwyk, L., & Dyson, L. (2013). Climatological characteristics of fog at Cape Town International Airport. Weather and Forecasting, 28(3), 631–646.

    Article  Google Scholar 

  • Vautard, R., Yiou, P., & van Oldenborgh, G. J. (2009). Decline of fog, mist and haze in Europe over the past 30 years. Nature Geoscience, 2, 115–119.

    Article  Google Scholar 

  • Wang, Y., Gao, S., Fu, G., Sun, J., & Zhang, S. (2014). Assimilating MTSAT-derived humidity in nowcasting sea fog over the Yellow Sea. Weather and Forecasting, 29, 205–225.

    Article  Google Scholar 

  • Wilcox, E. M. (2017). Multi-spectral remote sensing of sea fog with simultaneous passive infrared and microwave sensors (Chap. 11). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

  • Zhang, S.-P., Xie, S.-P., Liu, Q.-L., Yang, Y.-Q., Wang, X.-G., & Ren, Z.-P. (2009). Seasonal variations of Yellow Sea fog: Observations and mechanisms. Journal of Climate, 22(24), 6758–6772.

    Google Scholar 

  • Zhang, S., & Yi, L. (2013). A comprehensive dynamic threshold algorithm for daytime sea fog retrieval over the Chinese adjacent seas. Pure and Applied Geophysics, 170, 1931–1944.

    Article  Google Scholar 

  • Zhang, S., & Lewis, J. M. (2017). Synoptic processes (Chap. 6). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.

    Google Scholar 

  • Zhou, B., & Du, J. (2010). Fog prediction from a multimodel mesoscale ensemble prediction system. Weather and Forecasting, 25, 303–322.

    Article  Google Scholar 

  • Zhou, B., Du, J., McQueen, J., Dimego, G., Manikin, G., Ferrier, B., et al. (2004) An introduction to NCEP SREF aviation project. Preprint. In 11th Conference 27 on Aviation, Range, and Aerospace, Oct 4–8, 2004. Hyannis: American Meteorological Society. Paper 9.15.

    Google Scholar 

Download references

Acknowledgment

Support for the writing of this chapter was partially provided by the U.S. Department of Energy grant DE-SC0001933 and the Croatian Science Foundation, project MARIPLAN (IP-2014-09-3606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darko Koračin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koračin, D. (2017). Modeling and Forecasting Marine Fog. In: Koračin, D., Dorman, C. (eds) Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-45229-6_9

Download citation

Publish with us

Policies and ethics