Skip to main content

The Cancer Secretome

  • Chapter
  • First Online:
Ex Vivo Engineering of the Tumor Microenvironment

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 930 Accesses

Abstract

Through rapid advancement of genomics by Next Generation Sequencing (NGS) and proteomics by Mass Spectrometry (MS) technologies and innovative sampling and bioinformatic strategies a new era of personalized medicine is upon us. Secreted proteins play an important role in tumorigenesis through cell growth, migration, invasion, and angiogenesis. As such, the measure of all secreted or shed proteins, referred to as “secretomics”, could be invaluable in terms of identifying early pharmacological or physiological biomarkers associated with cancer diagnosis and progression, of therapeutic response and/or resistance or even in identifying novel druggable protein targets. Most FDA-approved cancer secreted biomarkers are measured by standard immunoassay. There is an emerging rationale that as our understanding of the complexity of tumor biology and microenvironment increases at an accelerated rate, antiquated assays limited to detecting single markers may have narrow applicability and utility in a clinical setting in terms of relevancy to the disease biology and the diversity of a given patient population.

In this chapter, we will describe what secreted proteins are, the secreted protein oncologic landscape, the technology advancements that have facilitated the discovery and detection of the human cancer secretome, and their future contribution to the field of personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  3. Peer D (2014) Precision medicine—delivering the goods? Cancer Lett 352:2–3

    Article  CAS  PubMed  Google Scholar 

  4. Harris TJ, McCormick F (2010) The molecular pathology of cancer. Nat Rev Clin Oncol 7:251–265

    Article  CAS  PubMed  Google Scholar 

  5. Rosenblum D, Peer D (2014) Omics-based nanomedicine: the future of personalized oncology. Cancer Lett 352:126–136

    Article  CAS  PubMed  Google Scholar 

  6. Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426

    Article  PubMed  CAS  Google Scholar 

  7. Xuan J, Yu Y, Guo L, Shi L (2013) Next-generation sequencing in the clinic: promises and challenges. Cancer Lett 340:284–295

    Article  CAS  PubMed  Google Scholar 

  8. Buermans HPJ, den Dunnen JT (1842) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 2014:1932–1941

    Google Scholar 

  9. Zhou L, Li Q, Wang J, Huang C, Nice EC (2015) Oncoproteomics: trials and tribulations. Proteomics Clin Appl. 2016, 10:516–31

    Google Scholar 

  10. Low TY, Heck AJR (2016) Reconciling proteomics with next generation sequencing. Curr Opin Chem Biol 30:14–20

    Article  CAS  PubMed  Google Scholar 

  11. Baker ES, Liu T, Petyuk VA, Burnum-Johnson KE, Ibrahim YM, Anderson GA, Smith RD (2012) Mass spectrometry for translational proteomics: progress and clinical implications. Genome Med 4:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simon R, Roychowdhury S et al (2013) Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov 12:358–369

    Article  CAS  PubMed  Google Scholar 

  13. Gravitz L (2014) This time it’s personal. Nature 509:S52–S54

    Article  CAS  PubMed  Google Scholar 

  14. Schork NJ (2015) Time for one-person trials. Nature 520:609–611

    Article  CAS  PubMed  Google Scholar 

  15. De Bono JS, Ashworth A (2010) Translating cancer research into targeted therapeutics. Nature 467:543–549

    Article  PubMed  CAS  Google Scholar 

  16. Haber DA, Gray NS, Baselga J (2011) The evolving war on cancer. Cell 145:19–24

    Article  CAS  PubMed  Google Scholar 

  17. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Jänne PA, Costa DB, Varella-Garcia M, Kim WH, Lynch TJ, Fidias P, Stubbs H, Engelman JA, Sequist LV, Tan W, Gandhi L, Mino-Kenudson M, Wei GC, Shreeve SM, Ratain MJ, Settleman J, Christensen JG, Haber DA, Wilner K, Salgia R, Shapiro GI, Clark JW, Iafrate AJ (2010) Analplastic lymphoma kinase inhibition in non-small cell lung cancer. N Engl J Med 363(18):1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O'Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stegh AH et al (2013) Toward personalized cancer nanomedicine—past, present, and future. Integr Biol 5:48–65

    Article  CAS  Google Scholar 

  20. Pavlou PA, Diamanids EP, Blaustig IM (2013) The long journey of cancer biomarkers from the bench to the clinic. Clin Chem 59(1):1–11

    Article  CAS  Google Scholar 

  21. De Palma M, Hanahan D (2012) The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol Oncol 6(2):111–127

    Article  PubMed  Google Scholar 

  22. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Agrawal GK, Jwa N-S, Lebrun M-H, Job D, Rakwal R (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10(4):799–827

    Article  CAS  PubMed  Google Scholar 

  24. Karagiannis GS, Pavlou MP, Diamandis EP (2010) Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology. Mol Oncol 4(6):496–510

    Article  CAS  PubMed  Google Scholar 

  25. Füzéry AK, Levin J, Chan MM, Chan DW (2013) Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics 10:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Li D, Chan DW (2014) Proteomic cancer biomarkers from discovery to approval: it’s worth the effort. Expert Rev Proteomics 11(2):135–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Skalnikova H, Motlik J, Gadher SJ, Kovarova H (2011) Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11:691–708

    Article  CAS  PubMed  Google Scholar 

  28. Pawlak M, Schick E, Bopp MA, Schneider MJ, Oroszlan P, Ehrat M (2002) Zeptosens’ protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics 2:383–393

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Nowicka A et al (2015) Stromal cells derived from visceral and obese adipose tissue promote growth of ovarian cancers. Plos One 8:U1294–U1310

    Google Scholar 

  30. Liao C, Yu ZB et al (2015) Association between Th17-related cytokines and risk of non-small cell lung cancer among patients with or without chronic obstructive pulmonary disease. Cancer 17:3122–3129

    Article  CAS  Google Scholar 

  31. Shah MS, Fogelman DR et al (2015) Joint prognostic effect of obesity and chronic systemic inflammation in patients with metastatic colorectal cancer. Cancer 121(17):2968–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cohen EN, Gao H et al (2015) Inflammation mediated metastasis: immune induced epithelial-to-mesenchymal transition in inflammatory breast cancer cells. PLoS One 10(7), e0132710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang J, Yin L et al (2014) Detection of serum VEGF and MMP-9 levels by Luminex multiplexed assays in patients with breast infiltrative ductal carcinoma. Exp Ther Med 8(1):175–180

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zemskova MY, Song J et al (2015) Regulation of prostate stromal fibroblasts by the PIM1 protein kinase. Cell Signal 27(1):135–146

    Article  CAS  PubMed  Google Scholar 

  35. Tsaur I, Noack A et al (2015) CCL2 chemokine as a potential biomarker for prostate cancer: a pilot study. Cancer Res Treat 47(2):306–312

    Article  CAS  PubMed  Google Scholar 

  36. Rosser CJ, Dai Y (2014) Simultaneous multi-analyte urinary protein assay for bladder cancer detection. BMC Biotechnol 14:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Arellano-Garcia ME, Hu S et al (2008) Multiplexed immunobead-based assay for detection of oral cancer protein biomarkers in saliva. Oral Dis 14(8):705–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paulitschke V, Kunstfeld R et al (2009) Entering a new era of rational biomarker discovery for early detection of melanoma metastases: secretome analysis of associated stroma cells. J Proteome Res 8:2501–2510

    Article  CAS  PubMed  Google Scholar 

  39. Madridakis M, Vlahou A (2010) Secretome proteomics for discovery of cancer biomarkers. J Proteomics 73:2291–2305

    Article  CAS  Google Scholar 

  40. Dowling P, o’Driscoll L, Meleady P, Henry M, Roy S, Ballot J, Moriarty M, Crown J, Clynes M (2007) 2-D difference gel electrophoresis of the lung squamous cell carcinoma versus normal sera demonstrates consistent alterations in the levels of ten specific proteins. Electrophoresis 28:4302–4310

    Article  CAS  PubMed  Google Scholar 

  41. Xue H, Lu B, Lai M (2008) The cancer secretome: a reservoir of biomarkers. J Transl Med 6:51

    Article  CAS  Google Scholar 

  42. Levin VA, Panchabhai SC et al (2010) Different changes in protein and phosphoprotein levels results from serum starvation. J Proteome Res 9:179–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin Q, Tan HW et al (2013) Sieving through the cancer secretome. Biochim Biophys Acta 1834:2360–2371

    Google Scholar 

  44. Pavlou MP, Diamandis EP (2010) The cancer cell secretome: a good source for discovering biomarkers. J Proteomics 73:1896–1906

    Article  CAS  PubMed  Google Scholar 

  45. Paul D, Kumar A, Gajbhiye A, Santra MK, Srikanth R (2013) Mass spectrometry-based proteomics in molecular diagnostics: discovery of cancer biomarkers using tissue culture. Biomed Res Int 2013:783131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E, Zou X, Biggs CA, Wright PC (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404(4):1011–1027

    Article  CAS  PubMed  Google Scholar 

  47. Chahrour O, Cobice D, Malone J (2015) Stable isotope labeling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal 113:2–20

    Article  CAS  PubMed  Google Scholar 

  48. Dittmar G, Selbach M (2015) SILAC for biomarker discovery. Proteomics Clin Appl 9(3–4):301–306

    Article  CAS  PubMed  Google Scholar 

  49. Chen X, Wei S, Ji Y, Guo X, Yang F (2015) Quantitative proteomics using SILAC: principles, applications, and developments. Proteomics 15(18):3175–3192

    Article  CAS  PubMed  Google Scholar 

  50. Stastna M, Van Eyk JE (2012) Secreted proteins as a fundamental source of biomarker discovery. Proteomics 12:722–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu CC, Hsu CW, Chen CD, Yu CJ, Chang KP, Tai DI, Liu HP, Su WH, Chang YS, Yu JS (2010) Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas. Mol Cell Proteomics 9(8):1100–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu R, Huffman K et al (2016) Quantitative secretomic analysis identifies extracellular protein factors that modulate the metastatic phenotype of non-small cell lung cancer. J Proteome Res 15:477–486

    Article  CAS  PubMed  Google Scholar 

  53. Luo X, Liu Y (2011) A high-quality secretome of A549 cells aided the discovery of C4b-binding protein ass a novel serum biomarker for non-small cell lung cancer. J Proteomics 74:528–538

    Article  CAS  PubMed  Google Scholar 

  54. Wang CI, Wang CW et al (2011) Importin subunit alpha-2 is identified as a potential biomarker for non-small cell lung cancer by integration of the cancer cell secretome and tissue transcriptome. Int J Cancer 128:2364–2372

    Article  CAS  PubMed  Google Scholar 

  55. Planque C, Kulasingam V et al (2009) Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell line. Mol Cell Proteomics 8(12):2746–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang CL, Wang CI et al (2009) Discovery of retinoblastoma-associated binding protein 46 as a novel prognostic marker for distant metastasis in non small cell lung cancer by combined analysis of cancer cell secretome and pleural effusion proteome. J Proteome Res 8:4428–4440

    Article  CAS  PubMed  Google Scholar 

  57. Yu Y, Pan X et al (2013) An iTRAQ based quantitative proteomic strategy to explore novel secreted proteins in metastatic hepatocellular carcinoma cell lines. Analyst 138(16):4505–4511

    Article  CAS  PubMed  Google Scholar 

  58. Schiarea S, Solinas G et al (2010) Secretome analysis of multiple pancreatic cancer cell lines reveals perturbations of key functional networks. J Proteome Res 9(9):4376–4392

    Article  CAS  PubMed  Google Scholar 

  59. Rocco M, Malorni L et al (2001) Proteomic profiling of human melanoma metastatic cell line secretomes. J Proteome Res 10:4703–4714

    Article  CAS  Google Scholar 

  60. Loei H, Tan HT et al (2011) Mining the gastric cancer secretome: identification of GRN as a potential diagnostic marker for early gastric cancer. J Proteome Res 11:1759–1772

    Article  CAS  Google Scholar 

  61. Karagiannis GS, Petraki C et al (2012) Proteomic signatures of the desmoplastic invasion front reveal collagen type XII as a marker of myofibroblastic differentiation during colorectal cancer metastasis. Oncotarget 3:267–285

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yao L, Lao W et al (2012) Identification of EFEMP2 as a serum biomarker for the early detection of colorectal cancer with lectin affinity capture assisted secretome analysis of cultured fresh tissue. J Proteome Res 11:3281–3294

    Article  CAS  PubMed  Google Scholar 

  63. Kawanishi H, Matsui Y et al (2008) Secreted CXCL1 is a potential mediator and marker of the tumor invasion of bladder cancer. Clin Cancer Res 14(9):2579–2587

    Article  CAS  PubMed  Google Scholar 

  64. Jeon YR, Kim SY et al (2013) Identification of annexin II as a novel secretory biomarker for breast cancer. Proteomics 13:3145–3156

    Article  CAS  PubMed  Google Scholar 

  65. Chevalier F, Depagne J et al (2013) Accumulation of cyclophilin A isoforms in conditioned media of irradiated breast cancer cells. Proteomics 12:1756–1766

    Article  CAS  Google Scholar 

  66. Kulasingam V, Zheng Y et al (2009) Activated leukocyte cell adhesion molecule: a novel biomarker for breast cancer. Int J Cancer 125:9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Whelan SA, He J et al (2012) Mss Spectrometry (LC-MS/MS) identified proteomic biosignatures of breast cancer in proximal fluid. J Proteome Res 11:5034–5045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu CC, Chen HC et al (2008) Identification of collapsing response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics 8:316–332

    Article  CAS  PubMed  Google Scholar 

  69. Sandim V, Pereira DA et al (2016) Proteomic analysis reveals differentially secreted proteins in the urine from patients with clear cell renal cell carcinoma. Urol Oncol Sem Orig Invest 34:5.e11–e25.

    Google Scholar 

  70. Wang Z, Wang C et al (1824) Differential proteome profiling of pleural effusions from lung cancer and benign inflammatory disease patients. Biochim Biophys Acta 2012:692–700

    Google Scholar 

  71. Li Y, Lian H et al (2015) Proteome screening of pleural effusions identifies IL1A as a diagnostic biomarker for non-small cell lung cancer. Biochem Biophys Res Commun 457(2):177–182

    Article  CAS  PubMed  Google Scholar 

  72. Xiao H, Zhang H et al (2012) Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol Cell Proteomics 11:M111

    Article  PubMed Central  CAS  Google Scholar 

  73. Fijneman RJ, de Wit M et al (2012) Proximal fluid proteome profiling of mouse colon tumors reveals biomarkers for early diagnosis of human colorectal cancer. Clin Cancer Res 18:2613–2624

    Article  CAS  PubMed  Google Scholar 

  74. Ang CS, Rothacker H et al (2011) Use of multiple reaction monitoring for multiplex analysis of colorectal cancer-associated proteins in human feces. Electrophoresis 32:1926–1938

    Article  CAS  PubMed  Google Scholar 

  75. Gromov P, Gromova I et al (2010) Up-regulated proteins in the fluid bathing the tumor cell microenvironment as potential serological markers for early detection of cancer of the breast. Mol Oncol 4:65–89

    Article  CAS  PubMed  Google Scholar 

  76. Raso C, Cosentino C et al (2012) Characterization of breast cancer interstitial fluids by TnT labeling, LTQ-orbitrap velos mass spectrometry, and pathway analysis. J Proteome Res 11:3199–3210

    Article  CAS  PubMed  Google Scholar 

  77. Alexander H, Stegner AL et al (2004) Proteomic analysis to identify breast cancer biomarkers in nipple fluid. Clin Cancer Res 10:7500–7510

    Article  CAS  PubMed  Google Scholar 

  78. Choi SYC, Lin D et al (2014) Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev 79–80:222–237

    Article  PubMed  CAS  Google Scholar 

  79. Baguley BC, Marshall ES (1999) Short-term cultures of clinical tumor material: potential contributions to oncology research. Oncol Res 11:115–124

    CAS  PubMed  Google Scholar 

  80. Tentler JJ, Tan AC et al (2012) Patient-derived tumor xenografts for oncology drug development. Nat Rev Clin Oncol 9:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee JY, Kim SY et al (2015) Patient-derived cell models as preclinical tools for genome-directed targeted therapy. Oncotarget 6(28):25619–25630

    Article  PubMed  PubMed Central  Google Scholar 

  82. Girotti MR, Gremel G et al. Application of sequencing, liquid biopsies and patient-derived xenografts for personalized medicine in melanoma. Cancer Discov. 2016. doi:10.1158/2159-8290. CD-15-1336

  83. Whittle JR, Lewis MT et al (2015) Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res 17:17

    Article  PubMed  PubMed Central  Google Scholar 

  84. Naipal KA, Verkaik NS et al (2016) Tumor slice culture system to assess drug response of primary breast cancer. BMC Cancer 16:78

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sokol ES, Miller DH et al (2016) Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res 18:19

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gao D, Vela I et al (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159:176–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zervantonakis IK, Hughes-Alford SK et al (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109(34):13515–13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mishra P, Banerjee D, Ben-Baruch A (2011) Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol 89:31–39

    Article  CAS  PubMed  Google Scholar 

  89. MBeunkui F, Johann DJ et al (2009) Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63:571–582

    Article  PubMed  Google Scholar 

  90. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  CAS  PubMed  Google Scholar 

  91. Orimo A, Gupta PB et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promotes tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  CAS  PubMed  Google Scholar 

  92. Tommelein J, Verset L, Boterberg T, Demetter P, Bracke M, De Wever O (2015) Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Front Oncol 5:63 [Open-access - Creative Commons Attribution License (CC BY)]

    Google Scholar 

  93. Chen S-X, Xu X-E et al (2014) Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation. J Proteomics 110:155–171

    Article  CAS  PubMed  Google Scholar 

  94. Ge S, Mao YM et al (2012) Comparative proteomic analysis of secreted proteins from nasopharyngeal carcinoma-associated stromal fibroblasts and normal fibroblasts. Exp Ther Med 3:857–860

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Holmberg C, Ghesquiere B et al (2013) Mapping proteolytic processing in the secretome of gastric cancer-associated myofibroblasts reveals activation of MMP_1, MMP-2 and MMP-3. J Proteome Res 12:3413–3422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kobayashi R, Deavers M et al (2009) 14-3-3 zeta protein secreted by tumor-associated monocytes/macrophages from ascites of epithelial ovarian cancer patients. Cancer Immunol Immunother 58:247–258

    Article  CAS  PubMed  Google Scholar 

  97. Makridakis M, Roubelakis MG et al (2013) Biochim Biophys Acta 1834:2380–2384

    Article  CAS  PubMed  Google Scholar 

  98. Roche S, D’Ippolito G et al (2013) Comparative analysis of protein expression of three stem cell populations: models of cytokine delivery system in vivo. Int J Pharm 440:72–82

    Article  CAS  PubMed  Google Scholar 

  99. Sarkar P, Randall SM (2012) Targeted proteomics of the secretory pathway reveals the secretome of mouse embryonic fibroblasts and human embryonic stem cells. Mol Cell Proteomics 11:1829–1839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bendall SC, Hughes JL et al (2009) An enhanced mass spectrometry approach reveals human embryonic stem cell growth factors in culture. Mol Cell Proteomics 8:421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim JM, Kim YH et al (2013) Comparative secretome analysis of human bone marrow-derived mesenchymal stem cells during osteogenesis. J Cell Physiol 228:216–224

    Article  CAS  PubMed  Google Scholar 

  102. Choi YA, Lim KM et al (2010) Secretome analysis of human BMSC’s and identification of SMOC1 as an important ECM protein in osteoblast differentiation. J Proteome Res 9:2946–2956

    Article  CAS  PubMed  Google Scholar 

  103. Lee MJ, Kim J et al (2010) Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells. J Proteome Res 9:1754–1762

    Article  CAS  PubMed  Google Scholar 

  104. Chiellini C, Cochet I et al (2008) Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Mol Biol 9:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Thirant C, Galan-Moya EM et al (2012) Differential proteomicanalysis of human glioblastoma and neural stem cells reveals HDGF as a novel angiogenic secreted factor. Stem Cells 30:845–853

    Article  CAS  PubMed  Google Scholar 

  106. Brandi J, Dalla Pozza E et al (2016) Secretome protein signature of human pancreatic cancer stem-like cells. J Proteomics 136:1–12

    Article  CAS  PubMed  Google Scholar 

  107. Rongkuan H, Huffman KE et al (2016) Quantitative secretomic analysis identifies extracellular protein factors that modulate the metastatic phenotype of non-small cell lung cancer. J Proteome Res 15:477–486

    Article  CAS  Google Scholar 

  108. Mateo F, Meca-Cortes O et al (2014) SPARC mediates metastatic cooperation between CSC and non-CSC prostate cancer cell subpopulations. Mol Cancer 13:237

    Article  PubMed  PubMed Central  Google Scholar 

  109. American Cancer Society (2016) Cancer facts and figures 2016. American Cancer Society, Atlanta, GA. Also available online: Exit Disclaimer (PDF—1.67 MB). Accessed 1 Feb 2016

    Google Scholar 

  110. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:571–573

    Article  Google Scholar 

  111. Suva LJ, Washam C et al (2011) Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol 7(4):208–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Blanco MA, LeRoy G et al (2012) Global secretome analysis identifies novel mediators of bone metastasis. Cell Res 22:1339–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Aguado BA, Wu JJ et al (2015) Secretome identification of immune cell factors mediating metastatic cell homing. Sci Rep 5:17566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Smith RD (2012) Mass Spectrometry in biomarker applications: from untargeted discovery to targeted verification, and implications for platform convergence and clinical application. Clin Chem 58:528–530

    Article  CAS  PubMed  Google Scholar 

  115. Nesvizhskii AI (2014) Proteogenomics: concepts, applications and computational strategies. Nat Methods 11:1114–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Low TY, van Heesch S et al (2013) Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. Cell Rep 5:1469–1478

    Article  CAS  PubMed  Google Scholar 

  117. Weinstein JN, Collisson EA et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ritchie MD, Holzinger ER et al (2015) Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 16L:85–97

    Article  CAS  Google Scholar 

  119. Hollander MC, Blumenthal GM et al (2011) PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 11:289–301

    Article  CAS  PubMed  Google Scholar 

  120. Chen Y et al (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455:971–974

    Article  CAS  PubMed  Google Scholar 

  121. Turner N, Grose R et al (2010) Fibroblast growth factor signaling: from development to cancer. Nat Rev Cancer 10:116–129

    Article  CAS  PubMed  Google Scholar 

  122. Shangary S, Wnag S et al (2008) Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res 14:5318–5324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Woude G (2012) Targeting MET, in cancer: rationale and progress. Nat Rev Cancer 12:89–103

    Article  CAS  Google Scholar 

  124. Narayanan R (2015) Druggable cancer secretome: neoplasm-associated traits. Cancer Genomics Proteomics 12:119–132

    CAS  PubMed  Google Scholar 

  125. Chen R, Snyder M et al (2012) Systems biology: personalized medicine for the future? Curr Opin Pharmacol 12:623–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen R, Mias GI et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148:1293–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li-Pook-Than J, Snyder M et al (2013) iPOP goes the world: integrated personalized omics profiling and the road toward improved health care. Chem Biol 20:660–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Bowden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bowden, M. (2017). The Cancer Secretome. In: Aref, A., Barbie, D. (eds) Ex Vivo Engineering of the Tumor Microenvironment. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-45397-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45397-2_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-45395-8

  • Online ISBN: 978-3-319-45397-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics