Skip to main content

Graphene: An Emerging Carbon Nanomaterial for Bone Tissue Engineering

  • Chapter
  • First Online:
Graphene-based Materials in Health and Environment

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

The development of materials and strategies that can promote faster bone healing and improved regeneration of bony defects is of high interest. Graphene and its derivatives (graphene oxide and reduced graphene oxide) have remarkable mechanical properties, can be chemically modified and allow the attachment of molecules and proteins. Due to these characteristics, these carbon-based materials have received increasing attention for several biomedical applications. As graphenes can improve mechanical properties of several biomaterials, induce, and increase cell differentiation toward osteoblasts, they have emerged as interesting alternatives for to promote bone regeneration. Herein, the key achievements made with graphenes for bone tissue engineering are presented with particular emphasis on their combination with biomaterials for bone regeneration and as coatings for biomedical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PF, Schuetz MA, Hutmacher DW (2013) Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res 1(3):216

    Article  Google Scholar 

  2. Oryan A, Alidadi S, Moshiri A (2013) Current concerns regarding healing of bone defects. Hard Tissue 2:13

    Google Scholar 

  3. Bao CLM, Teo EY, Chong M, Liu Y, Choolani M, Chan J (2013) Advances in bone tissue engineering, Regenerative Medicine and Tissue Engineering. In: Prof. Jose A. Andrades (ed) InTech, doi:10.5772/55916. Available at: http://www.intechopen.com/books/regenerative-medicine-and-tissue-engineering/advances-in-bone-tissue-engineering

    Google Scholar 

  4. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554

    Article  Google Scholar 

  5. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408

    Article  Google Scholar 

  6. Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84(3):454–464

    Article  Google Scholar 

  7. Gazdag AR, Lane JM, Glaser D, Forster RA (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3(1):1–8

    Article  Google Scholar 

  8. Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, Heiland M, Wolff K-D, Smeets R (2012) Current trends and future perspectives of bone substitute materials–from space holders to innovative biomaterials. J Cranio-Maxillofac Surg 40(8):706–718

    Article  Google Scholar 

  9. Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25

    Article  Google Scholar 

  10. Lai G-J, Shalumon K, Chen S-H, Chen J-P (2014) Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr sPolym 111:288–297

    Article  Google Scholar 

  11. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792

    Article  Google Scholar 

  12. Porter JR, Ruckh TT, Popat KC (2009) Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 25(6):1539–1560

    Google Scholar 

  13. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486

    Article  Google Scholar 

  14. Yunos DM, Bretcanu O, Boccaccini AR (2008) Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 43(13):4433–4442

    Article  Google Scholar 

  15. Sahoo NG, Pan YZ, Li L, He CB (2013) Nanocomposites for bone tissue regeneration. Nanomedicine 8(4):639–653

    Article  Google Scholar 

  16. Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Controlled Release 173:75–88

    Article  Google Scholar 

  17. Song Y, Wei W, Qu X (2011) Colorimetric biosensing using smart materials. Adv Mater 23(37):4215–4236

    Article  Google Scholar 

  18. Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20(12):2277–2289

    Article  Google Scholar 

  19. Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee P-LR, Ahn J-H, Hong BH, Pastorin G (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678

    Article  Google Scholar 

  20. Dubey N, Bentini R, Islam I, Cao T, Neto AHC, Rosa V (2015) Graphene: a versatile 531 carbon-based material for bone tissue engineering. Stem Cells Int 2015:804213

    Google Scholar 

  21. Tang Z, Wu H, Cort JR, Buchko GW, Zhang Y, Shao Y, Aksay IA, Liu J, Lin Y (2010) Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 6(11):1205–1209

    Article  Google Scholar 

  22. Kalbacova M, Broz A, Kong J, Kalbac M (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15):4323–4329

    Article  Google Scholar 

  23. Xie H, Cao T, Gomes JV, Neto AHC, Rosa V (2015) Two and three-dimensional graphene substrates to magnify osteogenic differentiation of periodontal ligament stem cells. Carbon 93:266–275

    Article  Google Scholar 

  24. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  Google Scholar 

  25. Neto AC, Guinea F, Peres N, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109

    Article  Google Scholar 

  26. Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8(8):2458–2462

    Article  Google Scholar 

  27. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  28. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  Google Scholar 

  29. Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9(12):9243–9257

    Article  Google Scholar 

  30. Matsuoka F, Takeuchi I, Agata H, Kagami H, Shiono H, Kiyota Y, Honda H, Kato R (2013) Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells. PLoS ONE 8(2):e55082

    Article  Google Scholar 

  31. Lee WC, Lim CHY, Shi H, Tang LA, Wang Y, Lim CT, Loh KP (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9):7334–7341

    Article  Google Scholar 

  32. Crowder SW, Prasai D, Rath R, Balikov DA, Bae H, Bolotin KI, Sung H-J (2013) Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176

    Article  Google Scholar 

  33. Akhavana OG, Shahsavara M (2013) Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 59:200–211. doi:10.1016/j.carbon.2013.03.010

    Article  Google Scholar 

  34. Elkhenany H, Amelse L, Lafont A, Bourdo S, Caldwell M, Neilsen N, Dervishi E, Derek O, Biris AS, Anderson D (2015) Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J Appl Toxicol 35(4):367–374

    Article  Google Scholar 

  35. Shi X, Chang H, Chen S, Lai C, Khademhosseini A, Wu H (2012) Regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states. Adv Funct Mater 22(4):751–759

    Article  Google Scholar 

  36. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  Google Scholar 

  37. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053

    Article  Google Scholar 

  38. Langenbach F, Handschel J (2013) Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 4(5):117

    Article  Google Scholar 

  39. Phillips JE, Gersbach CA, Wojtowicz AM, García AJ (2006) Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfa1 serine phosphorylation. J Cell Sci 119(3):581–591. doi:10.1242/jcs.02758

    Article  Google Scholar 

  40. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7(6):683–692

    Article  Google Scholar 

  41. Nicolais L, Gloria A, Ambrosio L (2010) 17—The mechanics of biocomposites. In: Biomedical composites. Woodhead Publishing, pp 411–440. doi:10.1533/9781845697372.3.411

    Google Scholar 

  42. Mohandes F, Salavati-Niasari M (2014) Freeze-drying synthesis, characterization and in vitro bioactivity of chitosan/graphene oxide/hydroxyapatite nanocomposite. RSC Adv 4(49):25993. doi:10.1039/c4ra03534h

    Article  Google Scholar 

  43. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials. Small 6(6):711–723

    Google Scholar 

  44. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  Google Scholar 

  45. Hayashi T (1994) Biodegradable polymers for biomedical uses. Prog Polym Sci 19(4):663–702

    Article  Google Scholar 

  46. Rosa V, Zhang Z, Grande R, Nör J (2013) Dental pulp tissue engineering in full-length human root canals. J Dent Res. doi:10.1177/0022034513505772

    Google Scholar 

  47. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 290602

    Google Scholar 

  48. Ruan J, Wang X, Yu Z, Wang Z, Xie Q, Zhang D, Huang Y, Zhou H, Bi X, Xiao C, Gu P, Fan X (2015) Enhanced physiochemical and mechanical performance of chitosan-grafted graphene oxide for superior osteoinductivity. Adv Funct Mater. doi:10.1002/adfm.201504141

    Google Scholar 

  49. Depan D, Girase B, Shah JS, Misra RD (2011) Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater 7(9):3432–3445. doi:10.1016/j.actbio.2011.05.019

    Article  Google Scholar 

  50. Depan D, Misra RD (2013) The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: structure-function property relationship. Acta Biomater 9(4):6084–6094. doi:10.1016/j.actbio.2012.12.019

    Article  Google Scholar 

  51. Depan D, Pesacreta TC, Misra RDK (2014) The synergistic effect of a hybrid graphene oxide–chitosan system and biomimetic mineralization on osteoblast functions. Biomater Sci 2(2):264–274

    Article  Google Scholar 

  52. Kim J, Kim Y-R, Kim Y, Lim KT, Seonwoo H, Park S, Cho S-P, Hong BH, Choung P-H, Chung TD, Choung Y-H, Chung JH (2013) Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. Mater Chem B 1(7):933. doi:10.1039/c2tb00274d

    Article  Google Scholar 

  53. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256

    Google Scholar 

  54. Kumar S, Raj S, Kolanthai E, Sood AK, Sampath S, Chatterjee K (2015) Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications. ACS Appl Mater Interfaces 7(5):3237–3252. doi:10.1021/am5079732

    Article  Google Scholar 

  55. Landis WJ, Jacquet R (2013) Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif Tissue Int 93(4):329–337

    Article  Google Scholar 

  56. Gloria A, De Santis R, Ambrosio L (2010) Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech 8(2):57–67

    Google Scholar 

  57. Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M, Dai J, Shi X, Zhang Z (2015) Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces 7(11):6331–6339. doi:10.1021/acsami.5b00862

    Article  Google Scholar 

  58. Xu LQ, Yang WJ, Neoh KG, Kang ET, Fu GD (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43(20):8336–8339

    Google Scholar 

  59. Nassif N, Martineau F, Syzgantseva O, Gobeaux F, Willinger M, Coradin T, Cassaignon S, Azaïs T, Giraud-Guille MM (2010) In vivo inspired conditions to synthesize biomimetic hydroxyapatite. Chem Mater 22(12):3653–3663

    Google Scholar 

  60. Cheng J, Liu H, Zhao B, Shen R, Liu D, Hong J, Wei H, Xi P, Chen F, Bai D (2015) MC3T3-E1 preosteoblast cell-mediated mineralization of hydroxyapatite by poly-dopamine-functionalized graphene oxide. J Bioactive Compat Polym 30(3):289–301. doi:10.1177/0883911515569918

    Article  Google Scholar 

  61. Oh S, Oh N, Appleford M, Ong JL (2006) Bioceramics for tissue engineering applications—a review. Am J Biochem Biotechnol 2(2):49–56

    Article  Google Scholar 

  62. Agrawal C, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55(2):141–150

    Article  Google Scholar 

  63. Tonetto A, Lago PW, Borba M, Rosa V (2015) Effects of chrondro-osseous regenerative compound associated with local treatments in the regeneration of bone defects around implants: an in vivo study. Clin Oral Investig 20(2):267–274

    Google Scholar 

  64. Zyman Z, Ivanov I, Glushko V, Dedukh N, Malyshkina S (1998) Inorganic phase composition of remineralisation in porous CaP ceramics. Biomaterials 19(14):1269–1273

    Article  Google Scholar 

  65. Lin L, Chow KL, Leng Y (2009) Study of hydroxyapatite osteoinductivity with an osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res, Part A 89(2):326–335

    Article  Google Scholar 

  66. Choi JW, Kong YM, Kim HE, Lee IS (1998) Reinforcement of hydroxyapatite bioceramic by addition of Ni3Al and Al2O3. J Am Ceram Soc 81(7):1743–1748

    Article  Google Scholar 

  67. Lahiri D, Ghosh S, Agarwal A (2012) Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review. Mater Sci Eng, C 32(7):1727–1758

    Article  Google Scholar 

  68. Li M, Liu Q, Jia Z, Xu X, Cheng Y, Zheng Y, Xi T, Wei S (2014) Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 67:185–197

    Article  Google Scholar 

  69. Yi L, Jing H, Hua L (2013) Synthesis of hydroxyapatite–reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. J Mater Chem B 1:1826–1834

    Article  Google Scholar 

  70. Lee JH, Shin YC, Jin OS, Kang SH, Hwang YS, Park JC, Hong SW, Han DW (2015) Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale 7(27):11642–11651. doi:10.1039/c5nr01580d

    Article  Google Scholar 

  71. Lee JH, Shin YC, Lee SM, Jin OS, Kang SH, Hong SW, Jeong CM, Huh JB, Han DW (2015) Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep 5:18833. doi:10.1038/srep18833

    Article  Google Scholar 

  72. Zhang L, Liu W, Yue C, Zhang T, Li P, Xing Z, Chen Y (2013) A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon 61:105–115

    Article  Google Scholar 

  73. Mohandes F, Salavati-Niasari M (2014) In vitro comparative study of pure hydroxyapatite nanorods and novel polyethylene glycol/graphene oxide/hydroxyapatite nanocomposite. J Nanopart Res 16(9):1–12

    Article  Google Scholar 

  74. Nair M, Nancy D, Krishnan AG, Anjusree GS, Vadukumpully S, Nair SV (2015) Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells. Nanotechnology 26(16):161001. doi:10.1088/0957-4484/26/16/161001

    Article  Google Scholar 

  75. Tatavarty R, Ding H, Lu G, Taylor RJ, Bi X (2014) Synergistic acceleration in the osteogenesis of human mesenchymal stem cells by graphene oxide-calcium phosphate nanocomposites. Chem Commun (Camb) 50(62):8484–8487. doi:10.1039/c4cc02442g

    Article  Google Scholar 

  76. Wu C, Xia L, Han P, Xu M, Fang B, Wang J, Chang J, Xiao Y (2015) Graphene-oxide-modified β-tricalcium phosphate bioceramics stimulate in vitro and in vivo osteogenesis. Carbon 93:116–129. doi:10.1016/j.carbon.2015.04.048

    Article  Google Scholar 

  77. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373

    Article  Google Scholar 

  78. Gao C, Liu T, Shuai C, Peng S (2014) Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance. Sci Rep 4:4712. doi:10.1038/srep04712

    Google Scholar 

  79. Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47(3):49–121

    Article  Google Scholar 

  80. La WG, Jin M, Park S, Yoon HH, Jeong GJ, Bhang SH, Park H, Char K, Kim BS (2014) Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. Int J Nanomed 9(Suppl 1):107–116. doi:10.2147/IJN.S50742

    Google Scholar 

  81. La WG, Park S, Yoon HH, Jeong GJ, Lee TJ, Bhang SH, Han JY, Char K, Kim BS (2013) Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small 9(23):4051–4060

    Article  Google Scholar 

  82. Zhou Q, Yang P, Li X, Liu H, Ge S (2016) Bioactivity of periodontal ligament stem cells on sodium titanate coated with graphene oxide. Scientific Reports 6:19343

    Article  Google Scholar 

  83. Jung HS, Y-j Choi, Jeong J, Lee Y, Hwang B, Jang J, Shim J-H, Kim YS, Choi HS, Oh SH, Lee CS, Cho D-W, Hahn SK (2016) Nanoscale graphene coating on commercially pure titanium for accelerated bone regeneration. RSC Adv 6(32):26719–26724. doi:10.1039/C6RA03905G

    Article  Google Scholar 

  84. Dong W, Hou L, Li T, Gong Z, Huang H, Wang G, Chen X, Li X (2015) A dual role of graphene oxide sheet deposition on titanate nanowire scaffolds for osteo-implantation: mechanical hardener and surface activity regulator. Sci Rep 5:18266

    Google Scholar 

  85. Keselowsky B, Wang L, Schwartz Z, Garcia A, Boyan B (2007) Integrin α5 controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. J Biomed Mater Res, Part A 80(3):700–710

    Article  Google Scholar 

  86. Podila R, Moore T, Alexis F, Rao A (2013) Graphene coatings for biomedical implants. JoVE 73:e50276

    Google Scholar 

  87. Zhao C, Lu X, Zanden C, Liu J (2015) The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior. Biomed Mater 10(1):015019

    Article  Google Scholar 

  88. Fabbri P, Valentini L, Hum J, Detsch R, Boccaccini AR (2013) 45S5 bioglasss-derived scaffolds coated with organic–inorganic hybrids containing graphene. Mater Sci Eng C 33:3592–3600

    Google Scholar 

Download references

Acknowledgments

The authors were supported by National University Health System (NUHSRO/2014/017/B2B/02), National University of Singapore (R-221-000-091-112) and National Research Foundation CRP award “Novel 2D materials with tailored properties: beyond graphene” (R-144-000-295-281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubey, N., Decroix, F.E.D., Rosa, V. (2016). Graphene: An Emerging Carbon Nanomaterial for Bone Tissue Engineering. In: Gonçalves , G., Marques, P., Vila, M. (eds) Graphene-based Materials in Health and Environment. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-45639-3_5

Download citation

Publish with us

Policies and ethics