Skip to main content

Computing Characteristic Polynomials of Matrices of Structured Polynomials

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Included in the following conference series:

Abstract

We present a parallel modular algorithm for finding characteristic polynomials of matrices with integer coefficient bivariate polynomials. For each prime, evaluation and interpolation gives us the bridge between polynomial matrices and matrices over a finite field so that the Hessenberg algorithm can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, A.: A new truncated fourier transform algorithm. In: Proceedings of ISSAC 2013, pp. 15–22. ACM Press (2013)

    Google Scholar 

  2. Bareiss, E.H.: Sylvester’s identity and multistep integer-preserving Gaussian elimination. Math. Comput. 22(103), 565–578 (1968)

    MathSciNet  MATH  Google Scholar 

  3. Berkowitz, S.J.: On computing the determinant in small parallel time using a small number of processors. Inf. Process. Lett. 18(3), 147–150 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen, H.: A Course in Computational Algebraic Number Theory, p. 138. Springer, Heidelberg (1995)

    Google Scholar 

  5. Dumas, J.G.: Bounds on the coefficients of the characteristic and minimal polynomials. J. Inequalities Pure Appl. Math. 8(2), 1–6 (2007). Article ID 31

    MathSciNet  MATH  Google Scholar 

  6. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  7. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer Academic Publishers, Boston (1992)

    Book  MATH  Google Scholar 

  8. van der Hoeven, J.: The truncated fourier transform and applications. In: Proceedings of ISSAC 2004, pp. 290–296. ACM Press (2004)

    Google Scholar 

  9. Kauers, M.: Personal Communication

    Google Scholar 

  10. Law, M., Monagan, M.: A parallel implementation for polynomial multiplication modulo a prime. In: Proceedings of PASCO 2015, pp. 78–86. ACM Press (2015)

    Google Scholar 

  11. Lossers, O.P.: A Hadamard-type bound on the coefficients of a determinant of polynomials. SIAM Rev. 16(3), 394–395 (2006). Solution to an exercise by Goldstein, A.J., Graham, R.L. (2006)

    Article  Google Scholar 

  12. Rabin, M.: Probabilistic algorithms in finite fields. SIAM J. Comput. 9(2), 273–280 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marshall Law or Michael Monagan .

Editor information

Editors and Affiliations

Appendices

A Appendix

A1: 16 x 16 matrix

$$ \left[ \begin{array}{cccccccccccccccc} {x}^{8}&{}{x}^{5}y&{}{x}^{5}y&{}{x}^{4}{y}^{2}&{}{x}^{5}y&{}{x}^{ 2}{y}^{2}&{}{x}^{4}{y}^{2}&{}{x}^{3}{y}^{3}&{}{x}^{5}y&{}{x}^{4}{y}^{2}&{}{x}^{2}{y}^{2}&{}{x}^{3}{y}^{3}&{}{x }^{4}{y}^{2}&{}{x}^{3}{y}^{3}&{}{x}^{3}{y}^{3}&{}{x}^{4}{y}^{4}\\ {x}^{7}&{}{x}^{6}y&{}{ x}^{4}y&{}{x}^{5}{y}^{2}&{}{x}^{4}y&{}{x}^{3}{y}^{2}&{}{x}^{3}{y}^{2}&{}{x}^{4}{y}^{3}&{}{x}^{4}y&{}{x}^{5}{y} ^{2}&{}x{y}^{2}&{}{x}^{4}{y}^{3}&{}{x}^{3}{y}^{2}&{}{x}^{4}{y}^{3}&{}{x}^{2}{y}^{3}&{}{x}^{5}{y}^{4} \\ {x}^{7}&{}{x}^{4}y&{}{x}^{6}y&{}{x}^{5}{y}^{2}&{}{x}^{4}y&{}x{y}^{2}&{}{x}^{5}{y}^{2}&{}{ x}^{4}{y}^{3}&{}{x}^{4}y&{}{x}^{3}{y}^{2}&{}{x}^{3}{y}^{2}&{}{x}^{4}{y}^{3}&{}{x}^{3}{y}^{2}&{}{x}^{2}{y}^{3 }&{}{x}^{4}{y}^{3}&{}{x}^{5}{y}^{4}\\ {x}^{6}&{}{x}^{5}y&{}{x}^{5}y&{}{x}^{6}{y}^{2}&{}{x} ^{3}y&{}{x}^{2}{y}^{2}&{}{x}^{4}{y}^{2}&{}{x}^{5}{y}^{3}&{}{x}^{3}y&{}{x}^{4}{y}^{2}&{}{x}^{2}{y}^{2}&{}{x}^{5 }{y}^{3}&{}{x}^{2}{y}^{2}&{}{x}^{3}{y}^{3}&{}{x}^{3}{y}^{3}&{}{x}^{6}{y}^{4}\\ {x}^{7} &{}{x}^{4}y&{}{x}^{4}y&{}{x}^{3}{y}^{2}&{}{x}^{6}y&{}{x}^{3}{y}^{2}&{}{x}^{5}{y}^{2}&{}{x}^{4}{y}^{3}&{}{x}^{4}y &{}{x}^{3}{y}^{2}&{}x{y}^{2}&{}{x}^{2}{y}^{3}&{}{x}^{5}{y}^{2}&{}{x}^{4}{y}^{3}&{}{x}^{4}{y}^{3}&{}{x}^{5}{y}^ {4}\\ {x}^{6}&{}{x}^{5}y&{}{x}^{3}y&{}{x}^{4}{y}^{2}&{}{x}^{5}y&{}{x}^{4}{y}^{2}&{}{x}^{4} {y}^{2}&{}{x}^{5}{y}^{3}&{}{x}^{3}y&{}{x}^{4}{y}^{2}&{}{y}^{2}&{}{x}^{3}{y}^{3}&{}{x}^{4}{y}^{2}&{}{x}^{5}{y}^ {3}&{}{x}^{3}{y}^{3}&{}{x}^{6}{y}^{4}\\ {x}^{6}&{}{x}^{3}y&{}{x}^{5}y&{}{x}^{4}{y}^{2}&{}{ x}^{5}y&{}{x}^{2}{y}^{2}&{}{x}^{6}{y}^{2}&{}{x}^{5}{y}^{3}&{}{x}^{3}y&{}{x}^{2}{y}^{2}&{}{x}^{2}{y}^{2}&{}{x}^ {3}{y}^{3}&{}{x}^{4}{y}^{2}&{}{x}^{3}{y}^{3}&{}{x}^{5}{y}^{3}&{}{x}^{6}{y}^{4}\\ {x}^{ 5}&{}{x}^{4}y&{}{x}^{4}y&{}{x}^{5}{y}^{2}&{}{x}^{4}y&{}{x}^{3}{y}^{2}&{}{x}^{5}{y}^{2}&{}{x}^{6}{y}^{3}&{}{x}^{2 }y&{}{x}^{3}{y}^{2}&{}x{y}^{2}&{}{x}^{4}{y}^{3}&{}{x}^{3}{y}^{2}&{}{x}^{4}{y}^{3}&{}{x}^{4}{y}^{3}&{}{x}^{7}{y }^{4}\\ {x}^{7}&{}{x}^{4}y&{}{x}^{4}y&{}{x}^{3}{y}^{2}&{}{x}^{4}y&{}x{y}^{2}&{}{x}^{3}{y}^ {2}&{}{x}^{2}{y}^{3}&{}{x}^{6}y&{}{x}^{5}{y}^{2}&{}{x}^{3}{y}^{2}&{}{x}^{4}{y}^{3}&{}{x}^{5}{y}^{2}&{}{x}^{4}{ y}^{3}&{}{x}^{4}{y}^{3}&{}{x}^{5}{y}^{4}\\ {x}^{6}&{}{x}^{5}y&{}{x}^{3}y&{}{x}^{4}{y}^{2 }&{}{x}^{3}y&{}{x}^{2}{y}^{2}&{}{x}^{2}{y}^{2}&{}{x}^{3}{y}^{3}&{}{x}^{5}y&{}{x}^{6}{y}^{2}&{}{x}^{2}{y}^{2}&{}{ x}^{5}{y}^{3}&{}{x}^{4}{y}^{2}&{}{x}^{5}{y}^{3}&{}{x}^{3}{y}^{3}&{}{x}^{6}{y}^{4}\\ {x }^{6}&{}{x}^{3}y&{}{x}^{5}y&{}{x}^{4}{y}^{2}&{}{x}^{3}y&{}{y}^{2}&{}{x}^{4}{y}^{2}&{}{x}^{3}{y}^{3}&{}{x}^{5}y&{}{ x}^{4}{y}^{2}&{}{x}^{4}{y}^{2}&{}{x}^{5}{y}^{3}&{}{x}^{4}{y}^{2}&{}{x}^{3}{y}^{3}&{}{x}^{5}{y}^{3}&{}{x}^{6} {y}^{4}\\ {x}^{5}&{}{x}^{4}y&{}{x}^{4}y&{}{x}^{5}{y}^{2}&{}{x}^{2}y&{}x{y}^{2}&{}{x}^{3}{y }^{2}&{}{x}^{4}{y}^{3}&{}{x}^{4}y&{}{x}^{5}{y}^{2}&{}{x}^{3}{y}^{2}&{}{x}^{6}{y}^{3}&{}{x}^{3}{y}^{2}&{}{x}^{4 }{y}^{3}&{}{x}^{4}{y}^{3}&{}{x}^{7}{y}^{4}\\ {x}^{6}&{}{x}^{3}y&{}{x}^{3}y&{}{x}^{2}{y}^ {2}&{}{x}^{5}y&{}{x}^{2}{y}^{2}&{}{x}^{4}{y}^{2}&{}{x}^{3}{y}^{3}&{}{x}^{5}y&{}{x}^{4}{y}^{2}&{}{x}^{2}{y}^{2} &{}{x}^{3}{y}^{3}&{}{x}^{6}{y}^{2}&{}{x}^{5}{y}^{3}&{}{x}^{5}{y}^{3}&{}{x}^{6}{y}^{4}\\ {x}^{5}&{}{x}^{4}y&{}{x}^{2}y&{}{x}^{3}{y}^{2}&{}{x}^{4}y&{}{x}^{3}{y}^{2}&{}{x}^{3}{y}^{2}&{}{x}^{4}{y}^{3}&{}{ x}^{4}y&{}{x}^{5}{y}^{2}&{}x{y}^{2}&{}{x}^{4}{y}^{3}&{}{x}^{5}{y}^{2}&{}{x}^{6}{y}^{3}&{}{x}^{4}{y}^{3}&{}{x}^ {7}{y}^{4}\\ {x}^{5}&{}{x}^{2}y&{}{x}^{4}y&{}{x}^{3}{y}^{2}&{}{x}^{4}y&{}x{y}^{2}&{}{x}^{5 }{y}^{2}&{}{x}^{4}{y}^{3}&{}{x}^{4}y&{}{x}^{3}{y}^{2}&{}{x}^{3}{y}^{2}&{}{x}^{4}{y}^{3}&{}{x}^{5}{y}^{2}&{}{x} ^{4}{y}^{3}&{}{x}^{6}{y}^{3}&{}{x}^{7}{y}^{4}\\ {x}^{4}&{}{x}^{3}y&{}{x}^{3}y&{}{x}^{4}{ y}^{2}&{}{x}^{3}y&{}{x}^{2}{y}^{2}&{}{x}^{4}{y}^{2}&{}{x}^{5}{y}^{3}&{}{x}^{3}y&{}{x}^{4}{y}^{2}&{}{x}^{2}{y}^ {2}&{}{x}^{5}{y}^{3}&{}{x}^{4}{y}^{2}&{}{x}^{5}{y}^{3}&{}{x}^{5}{y}^{3}&{}{x}^{8}{y}^{4}\end{array} \right] $$

A2: \( f_6(x,y) \) of 16 x 16 matrix

$$ ( 2x^{16}+4x^{14} ) y^{12}+ ( 4x^{18}+32x^{16}+28x^{14}+8x^{12} ) y^{11}+ $$
$$ ( x^{20}+34x^{18}+149x^{16}+188x^{14}+43x^{12}-22x^ {10}+3x^{8} ) y^{10}+ $$
$$ ( 16x^{20}+128x^{18}+452x^{16}+568x^{14}+268x^{12}-32x^{10}-72x^{8}-8x^{6} ) y^{9}+ $$
$$ ( 52x^{20}+348x^{18}+910{ x}^{16}+1172x^{14}+704x^{12}+68x^{10}-136x^{8}-120x^{6}-28x^{4} ) y^{8}+ $$
$$ ( 112x^{20}+596x^{18}+1344x^{16}+1788x^{14}+1224x^{12}+216x^{10}-220 x^{8}-184x^{6}-92x^{4}-32x^{2} ) y^{7}+ $$
$$ ( 133x^{20}+734x^{18}+1551x^{16}+1948x^{14}+1476x^{12}+428x^{10}-320x^{8}-276x^{6}-81x^{4}-34x ^{2}-15 ) y^{6}+ $$
$$ ( 112x^{20}+596x^{18}+1344x^{16}+1788x^{14}+1224x^{12}+216x^{10}-220x^{8}-184x^{6}-92x^{4}-32x^{2} ) y^{5}+ $$
$$ ( 52x^{ 20}+348x^{18}+910x^{16}+1172x^{14}+704x^{12}+68x^{10}-136x^{8}-120x^{6}-28x^{4} ) y^{4}+ $$
$$ ( 16x^{20}+128x^{18}+452x^{16}+568x^{14}+268x^{12 }-32x^{10}-72x^{8}-8x^{6} ) y^{3}+ $$
$$ ( x^{20}+34x^{18}+149x^{16}+188x^{14}+43x^{12}-22x^{10}+3x^{8} ) y^{2}+ $$
$$ ( 4x^{18}+32x^{16}+28{ x}^{14}+8x^{12} ) y+ ( 2x^{16}+4x^{14} ) y^0 $$

A3: First two coefficients of \( C(\lambda ,x,y) \) for 16 by 16 matrix

$$ c_0(x,y) = {x}^{32}{y}^{32} \left( x^2-1 \right) ^{32} $$
$$ c_1(x,y) = -{x}^{32}{y}^{28} \left( x^2-1 \right) ^{28} \left( 2\,{x}^{4}{y}^{2}+4\,{x}^{2}{y}^{3}+4\,{x}^{2}{y}^{2}+{y}^{4}+4\,{x}^{2}y+1 \right) $$

B1: Time 16 by 16 on Maple

figure a

B2: Time 16 by 16 on Magma

figure b

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Law, M., Monagan, M. (2016). Computing Characteristic Polynomials of Matrices of Structured Polynomials. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics