Skip to main content

Clapeyron and Ehrenfest Equations and Hyper-free Energy for Partly Open Systems

  • Chapter
  • First Online:
Thermal Physics and Thermal Analysis

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 11))

  • 2090 Accesses

Abstract

Following the approach applied by Clapeyron to describe sharp phase transitions in P-T diagrams of unary systems as well as that used by Ehrenfest for so-called second-order phase transitions, we derived a set of analogous equations for partly open binary and higher-order systems. These systems share one or more components with the surroundings (reservoir), and thus, their content in the system is given by their chemical potentials (activities, a f) in the reservoir. Hence, in addition to P-T diagrams, the phase relations can be represented in Ta f, Pa f, and a fa g phase diagrams and three additional Clapeyronian equations describe the corresponding borderlines delimiting the different phase fields. Moreover, it is shown that Ehrenfest equations cannot be applied for λ-transitions; however, their applicability is demonstrated for so-called partial phase transitions such as liquidus curves in closed binary systems. For partly open systems, 28 new Ehrenfestian equations are derived for partial phase transitions which involve, apart from the changes of heat capacity, thermal expansion and compressibility appearing in the original three Ehrenfest equations, the changes of newly defined quantities such as thermal, pressure, proper, and mutual plutabilities. The Clapeyronian and Ehrenfestian equations derived in this chapter can be useful for equilibrium studies and construction of thermodynamic models of nonstoichiometric phases as well as for the construction of simple phase diagrams reflecting the equilibrium phase relations under a given controlled atmosphere.

Pavel Holba—Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our previous works [20, 21], the term thermal phtochability κ fT  = −(∂Y f/∂T) P,af was used.

  2. 2.

    In our previous work [21], the term pressure phtochability κ fP  = −(∂Y f/∂P)T,af was used.

References

  1. Lehmann O (1988) Molekularphysik 2. Engelmann, Leipzig, pp 398–415

    Google Scholar 

  2. Hillert M (1998) Phase equilibria, phase diagrams and phase transformation. Their thermodynamic basis. Cambridge University Press, Cambridge

    Google Scholar 

  3. Elliott JR, Lira CT. (1999) Introductory Chemical Engineering Thermodynamics, 1st Ed., Prentice Hall PTR: 184

    Google Scholar 

  4. Clapeyron E (1834) Puissance motrice de la chaleur, Journal de l’École Royale Polytechnique 14(23):153–190

    Google Scholar 

  5. Clausius R (1850) Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Pogg Ann (Annalen der Physik) 79(368–397):500–524

    Article  Google Scholar 

  6. Ehrenfest P (1933) Phasenumwandlungen im üblichen und erweiterten Sinn, classifiziert nach dem entsprechenden Singularitäten des thermodynamischen Potentiales, Verhandlingen der Koninklijke Akademie van Wetenschappen Amsterdam 36: 153–157; Communications from the Physical Laboratory of the University of Leiden, Supplement No. 75b

    Google Scholar 

  7. Keesom WH, de Haas WJ (1932) Die Umwandlung flüssiges Helium I-Helium II unter Druck. Verhandlingen der Koninklijke Akademie van Wetenschappen Amsterdam 34:605; Communications from the Physical Laboratory of the University of Leiden, Communication No. 216b

    Google Scholar 

  8. de l’Hôpital G (1696) Analyse des infiniment petits pour l’intelligence des lignes Courbes, Paris

    Google Scholar 

  9. Maxwell JC (1871) Theory of heat. Longmans, Green&Co, London, pp 165–168

    Google Scholar 

  10. Rutgers AJ (1934) Note on supraconductivity I. Physica 2:1055–1058

    Article  Google Scholar 

  11. Landau LD (1937) On the theory of phase transitions. Zh Eksp Teor Fiz 7:19–32

    CAS  Google Scholar 

  12. Onsager L (1944) Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys Rev 65:117–149

    Article  CAS  Google Scholar 

  13. Pippard AB (1957) Elements of classical thermodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  14. Tisza L (1951) On the general theory of phase transitions. In Smoluchowski R et al (eds) Phase transitions in solids (Symposium at Cornell University, August, 1948). Wiley, New York, pp 1–37

    Google Scholar 

  15. Callen HB (1960) Thermodynamics. Wiley, New York

    Google Scholar 

  16. Matolcsi T (1996) On the classification of phase transitions. Z Angew Math Phys 47:837–857

    Article  CAS  Google Scholar 

  17. Holba P (2015) Ehrenfest equations for calorimetry and dilatometry. J Thermal Anal Cal 120(1):175–181

    Article  CAS  Google Scholar 

  18. Holba P (1992) Thermodynamics of partially open systems. Czech J Phys B 42:549–575

    Article  CAS  Google Scholar 

  19. Korzhinskiy DS (1957) Fizikochimikheskie osnovy analiza paragenesisov mineralov; Izd. Akad. nauk SSSR, Moscow: 184. English translation: (1959) Physicochemical basis of the analysis of the paragenesis of minerals, Consultants Bureau, New York

    Google Scholar 

  20. Holba P, Sedmidubský D (2013) Heat capacity equations for nonstoichiometric solids. J Therm Anal Calorim 113:239–245

    Article  CAS  Google Scholar 

  21. Sedmidubský D, Holba P (2015) Material properties of nonstoichiometric solids. J Therm Anal Calorim 1120:183–188

    Article  Google Scholar 

  22. Holba P, Sedmidubský D (2013) Crystal defects and nonstoichiometry contributions to heat capacity of solids, Chapter 3 in book: Thermal analysis of micro- nano- and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics, Ed. J. Šesták & P. Šimon, Springer, pp 53–74

    Google Scholar 

  23. Nevřiva M, Kraus H, Sedmidubský D (1996) Phase equilibria study in the partially open Cu-(O) and Me-Cu-(O) (Me = Sr, Bi, Ba) systems. Thermochim Acta 282:205–224

    Google Scholar 

  24. Sedmidubský D, Strejc A, Nevřiva M, Leitner J, Martin C (2003) Structural and phase relations in the Sr-Mn-O System. Solid State Phenom 90–91(2003):427–432

    Article  Google Scholar 

  25. Darken LS, Gurry RW (1945) The system iron-oxygen. I. The wüstite field and related equilibria. J Am Chem Soc 67:1378–1412. Darken LS, Gurry RW (1946) The system iron-oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases. J Am Chem Soc 68:789–816

    Google Scholar 

  26. Tretyakov YuD (1967) Termodinamika ferritov (in Russian). Izd. Chimiya, Leningradsk. Otdel. Moscow 1967.] Tretyakov YuD (1974) Chimiya nestechiometricheskikh okislov (in Russian). Izd. Moscow Univ 1974

    Google Scholar 

  27. Kellogg HH, Basu SK (1960) Thermodynamic properties of the system lead-sulfur-oxygen to 1100°K. Trans Metall Soc AIME 218:70–81

    CAS  Google Scholar 

  28. Clairaut AC (1743) Théorie de la figure de la terre, tirée des principes de l’hydrostatique, 2nd edn. (1808), Courcier, Paris

    Google Scholar 

  29. Sedmidubský D, Šesták J (2017) On the history and recent applications of hyperfree energy describing thermodynamics of mobile components in partly open ceramic systems - in memory of D.S. Korzhinskiĭ and P. Holba, Ceramics-Silikáty, submitted

    Google Scholar 

Download references

Acknowledgements

P. Holba acknowledges the support of Ministry of Education of the Czech Republic in the framework of CENTEM PLUS project (LO1402) operated under the “National Sustainability Programme I.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sedmidubský .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holba, P., Sedmidubský, D. (2017). Clapeyron and Ehrenfest Equations and Hyper-free Energy for Partly Open Systems. In: Šesták, J., Hubík, P., Mareš, J. (eds) Thermal Physics and Thermal Analysis. Hot Topics in Thermal Analysis and Calorimetry, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45899-1_7

Download citation

Publish with us

Policies and ethics