Skip to main content

Testosterone and Cardiovascular Effects

  • Chapter
  • First Online:
Testosterone
  • 1542 Accesses

Abstract

As men grow older, circulating testosterone (T) declines while the prevalence of ill health increases. T is metabolized by 5α-reductase (SRD5A2) to dihydrotestosterone (DHT, a more potent androgen) and by aromatase (CYP19A1) to estradiol (E2, an estrogen). Lower circulating T is associated with higher prevalence and incidence of cardiovascular disease (CVD) in middle-aged and older men. By contrast, higher T or higher DHT concentrations are independent predictors for reduced incidence of stroke in older men. Additionally, higher DHT is independently associated with reduced mortality from ischemic heart disease. Although the weight of epidemiologic evidence supports a beneficial influence of endogenous androgen to reduce risk of cardiovascular events, the role of exogenous T in this context remains controversial. A randomized controlled trial (RCT) of T in older men with limited mobility reported an increase in cardiovascular adverse effects associated with T. Another comparable study in frail or intermediate-frail older men found no such signal. The US Testosterone Trials found that T therapy in older men with low baseline T moderately improved sexual function, with no excess of cardiovascular adverse effects. Meta-analyses of T RCTs have generally not shown an association with cardiovascular adverse events. Retrospective analyses of insurance and prescription databases possess major methodologic limitations including lack of randomization, and other sources of bias and confounding, and have shown conflicting results associating T supplementation with either increased or reduced risk of CVD events or mortality. Of note, higher DHT or higher E2 are associated with longer leucocyte telomere length in men, a characteristic of slower biological aging. Mendelian randomization analysis suggests a possible causal link between E2 and telomere length, supporting the hypothesis that higher sex hormone concentrations could slow biological aging in men and thereby reduce the incidence of CVD. Men who are androgen deficient resulting from disease of the hypothalamus, pituitary, or testes should be considered for T replacement therapy. Further studies are needed to clarify the role of T supplementation to preserve health in men with low-normal circulating T in the absence of pathological hypogonadism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ARIC:

Atherosclerosis Risk in Communities Study

BMI:

Body mass index

BHS:

Busselton Health Survey

CVD:

Cardiovascular disease

CHS:

Cardiovascular Health Study

CI:

Confidence interval

CHD:

Coronary heart disease

DHT:

Dihydrotestosterone

E2:

Estradiol

EMAS:

European Male Aging Study

GC:

Gas chromatography

HR:

Hazard ratio

HIMS:

Health In Men Study

IHD:

Ischemic heart disease

LTL:

Leucocyte telomere length

LC:

Liquid chromatography

LH:

Luteinizing hormone

MS:

Mass spectrometry

MACE:

Major Adverse Cardiovascular Events

MI:

Myocardial infarction

MrOS:

Osteoporotic fractures in men

Q:

Quartile

RCT:

Randomized controlled trial

SHBG:

Sex hormone-binding globulin

T:

Testosterone

References

  1. United Nations, Department of Economic and Social Affairs, Population Division. World population ageing: 1950–2050. New York, NY: United Nations; 2001. p. 5–34.

    Google Scholar 

  2. Australian Institute of Health and Welfare. Cardiovascular disease, diabetes and chronic kidney disease - Australian facts: prevalence and incidence. Canberra: AIHW; 2014. p. 4–14.

    Google Scholar 

  3. Feldman HA, Longcope C, Derby CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 2002;87:589–98.

    CAS  PubMed  Google Scholar 

  4. Harman SM, Metter EJ, Tobin JD, et al. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J Clin Endocrinol Metab. 2001;86:724–31.

    CAS  PubMed  Google Scholar 

  5. Sartorius G, Spasevska S, Idan A, et al. Serum testosterone, dihydrotestosterone and estradiol concentrations in older men self-reporting very good health: the healthy man study. Clin Endocrinol. 2012;77:755–63.

    CAS  Google Scholar 

  6. Shi Z, Araujo AB, Martin S, et al. Longitudinal changes in testosterone over five years in community-dwelling men. J Clin Endocrinol Metab. 2013;98:3289–97.

    CAS  PubMed  Google Scholar 

  7. Sikaris K, McLachlan RI, Kazlauskas R, et al. Reproductive hormone reference intervals for healthy fertile young men: evaluation of automated platform assays. J Clin Endocrinol Metab. 2005;90:5928–36.

    CAS  PubMed  Google Scholar 

  8. Yeap BB, Alfonso H, Chubb SAP, et al. Reference ranges and determinants of testosterone, dihydrotestosterone and estradiol levels measured using liquid chromatography-tandem mass spectrometry in a population-based cohort of older men. J Clin Endocrinol Metab. 2012;97:4030–9.

    CAS  PubMed  Google Scholar 

  9. Yeap BB, Araujo AB, Wittert GA. Do low testosterone levels contribute to ill-health during male ageing? Crit Rev Clin Lab Sci. 2012;49:168–82.

    CAS  PubMed  Google Scholar 

  10. Bhasin S. Testicular disorders. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR, editors. Williams textbook of endocrinology. 11th ed. Philadelphia, PA: Saunders Elsevier; 2008. p. 645–99.

    Google Scholar 

  11. Lakshman KM, Kaplan B, Travison TG, et al. The effects of injected testosterone dose and age on the conversion of testosterone to estradiol and dihydrotestosterone in young and older men. J Clin Endocrinol Metab. 2010;95:3955–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hsu B, Cumming RG, Waite LM, et al. Longitudinal relationships between reproductive hormones and cognitive decline in older men: the Concord Health and Ageing in Men Project. J Clin Endocrinol Metab. 2015;100:2223–30.

    CAS  PubMed  Google Scholar 

  13. Jasuja GK, Travison TG, Davda M, et al. Age trends in estradiol and estrone levels measured using liquid chromatography tandem mass spectrometry in community-dwelling men of the Framingham Heart Study. J Gerontol Med Sci. 2013;68:733–40.

    CAS  Google Scholar 

  14. Brambilla DJ, Matsumoto AM, Araujo AB, McKinlay JB. The effect of diurnal variation on clinical measurement of serum testosterone and other sex hormone levels in men. J Clin Endocrinol Metab. 2009;94:907–13.

    CAS  PubMed  Google Scholar 

  15. Diver MJ, Imtiaz KE, Ahmad AM, et al. Diurnal rhythms of serum total, free and bioavailable testosterone and of SHBG in middle-aged men compared with those in young men. Clin Endocrinol. 2003;58:710–7.

    CAS  Google Scholar 

  16. Caronia LM, Dwyer AA, Hayden D, et al. Abrupt decrease in serum testosterone levels after an oral glucose load in men: implications for screening for hypogonadism. Clin Endocrinol. 2013;78:291–6.

    CAS  Google Scholar 

  17. Wang C, Catlin DH, Demers LM, et al. Measurement of total serum testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab. 2004;89:534–43.

    CAS  PubMed  Google Scholar 

  18. Handelsman DJ, Wartofsky L. Requirement for mass spectrometry sex steroid assays in the Journal of Clinical Endocrinology and Metabolism. J Clin Endocrinol Metab. 2013;98:3971–3. Subsequent comment in Wierman ME, et al. J Clin Endocrinol Metab. 2014; 99:4375.

    CAS  PubMed  Google Scholar 

  19. Cooper LA, Page ST, Amory JK, et al. The association of obesity with sex hormone-binding globulin is stronger than the association with aging – implications for the interpretation of total testosterone measurements. Clin Endocrinol. 2015;83:828. doi:10.1111/cen.12768.

    Article  CAS  Google Scholar 

  20. Ly LP, Sartorius G, Hull L, et al. Accuracy of calculated free testosterone formulae in men. Clin Endocrinol. 2010;73:382–8.

    CAS  Google Scholar 

  21. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84:3666–72.

    CAS  PubMed  Google Scholar 

  22. Smith GD, Ben-Shlomo Y, Beswick A, et al. Cortisol, testosterone, and coronary heart disease. Prospective evidence from the Caerphilly Study. Circulation. 2005;112:332–40.

    CAS  PubMed  Google Scholar 

  23. Arnlov J, Pencina MJ, Amin S, et al. Endogenous sex hormones and cardiovascular disease incidence in men. Ann Intern Med. 2006;145:176–84.

    CAS  PubMed  Google Scholar 

  24. Abbott RD, Launer LJ, Rodriguez BL, et al. Serum estradiol and risk of stroke in elderly men. Neurology. 2007;68:563–8.

    CAS  PubMed  Google Scholar 

  25. Vikan T, Schirmer H, Njolstad I, Svartberg J. Endogenous sex hormones and the prospective association with cardiovascular disease and mortality in men: the Tromso study. Eur J Endocrinol. 2009;161:435–42.

    CAS  PubMed  Google Scholar 

  26. Yeap BB, Hyde Z, Almeida OP, et al. Lower testosterone levels predict incident stroke and transient ischemic attack in older men. J Clin Endocrinol Metab. 2009;94:2353–9.

    CAS  PubMed  Google Scholar 

  27. Hyde Z, Norman PE, Flicker L, et al. Elevated luteinizing hormone predicts ischaemic heart disease events in older men. The Health In Men Study. Eur J Endocrinol. 2011;164:569–77.

    CAS  PubMed  Google Scholar 

  28. Haring R, Teng Z, Xanthakis V, et al. Associations of sex steroids, gonadotrophins, and their trajectories with clinical cardiovascular disease and all-cause mortality in elderly men from the Framingham Heart Study. Clin Endocrinol. 2013;78:629–34.

    CAS  Google Scholar 

  29. Soisson V, Brailly-Tabard S, Helmer C, et al. A J-shaped association between plasma testosterone and risk of ischemic arterial event in elderly men: the French 3C Cohort Study. Maturitas. 2013;75:282–8.

    CAS  PubMed  Google Scholar 

  30. Holmegard HN, Nordestgaard BG, Jensen GB, et al. Sex hormones and ischemic stroke: a prospective cohort study and meta-analyses. J Clin Endocrinol Metab. 2016;101:69–78.

    CAS  PubMed  Google Scholar 

  31. Ohlsson C, Barrett-Connor E, Bhasin S, et al. High serum testosterone is associated with reduced risk of cardiovascular events in elderly men. J Am Coll Cardiol. 2011;58:1674–81.

    CAS  PubMed  Google Scholar 

  32. Shores MM, Biggs ML, Arnold AM, et al. Testosterone, dihydrotestosterone, and incident cardiovascular disease and mortality in the cardiovascular health study. J Clin Endocrinol Metab. 2014;99:2061–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shores MM, Arnold AM, Biggs ML, et al. Testosterone and dihydrotestosterone and incident ischaemic stroke in men in the Cardiovascular Health Study. Clin Endocrinol. 2014;81:746–53.

    CAS  Google Scholar 

  34. Yeap BB, Alfonso H, Chubb SAP, et al. In older men, higher plasma testosterone or dihydrotestosterone are independent predictors for reduced incidence of stroke but not myocardial infarction. J Clin Endocrinol Metab. 2014;99:4565–73.

    CAS  PubMed  Google Scholar 

  35. Srinath R, Golden SH, Carson KA, Dobs A. Endogenous testosterone and its relationship to preclinical and clinical measures of cardiovascular disease in the Atherosclerosis Risk in Communities Study. J Clin Endocrinol Metab. 2015;100:1602–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yeap BB, Knuiman MW, Divitini ML, et al. Differential associations of testosterone, dihydrotestosterone and oestradiol with physical, metabolic and health-related factors in community-dwelling men aged 17-97 years from the Busselton Health Survey. Clin Endocrinol. 2014;81:100–8.

    CAS  Google Scholar 

  37. Shores MM, Matsumoto AM, Sloan KL, Kivlahan DR. Low serum testosterone and mortality in male veterans. Arch Intern Med. 2006;166:1660–5.

    CAS  PubMed  Google Scholar 

  38. Khaw K-T, Dowsett M, Folkerd E, et al. Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men. European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) prospective population study. Circulation. 2007;116:2694–701.

    CAS  PubMed  Google Scholar 

  39. Araujo AB, Kupelian V, Page ST, et al. Sex steroids and cause-specific mortality in men. Arch Intern Med. 2007;167:1252–60.

    CAS  PubMed  Google Scholar 

  40. Maggio M, Lauretani F, Ceda GP, et al. Relationship between low levels of anabolic hormones and 6-year mortality in older men. Arch Intern Med. 2007;167:2249–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Laughlin GA, Barrett-Connor E, Bergstrom J. Low serum testosterone and mortality in older men. J Clin Endocrinol Metab. 2008;93:68–75.

    CAS  PubMed  Google Scholar 

  42. Szulc P, Claustra B, Delmas PD. Serum concentrations of 17β-E2 and 25-hydroxycholecalciferol (25OHD) in relation to all-cause mortality in older men – the MINOS study. Clin Endocrinol. 2009;71:594–602.

    CAS  Google Scholar 

  43. Menke A, Guallar E, Rohrmann S, et al. Sex steroid concentrations and risk of death in US men. Am J Epidemiol. 2010;171:583–92.

    PubMed  PubMed Central  Google Scholar 

  44. Haring R, Volzke H, Steveling A, et al. Low serum testosterone levels are associated with increased risk of mortality in a population-based cohort of men aged 20-79. Eur Heart J. 2010;31:1494–501.

    CAS  PubMed  Google Scholar 

  45. Hyde Z, Norman PE, Flicker L, et al. Low free testosterone predicts mortality from cardiovascular disease but not other causes: the Health In Men Study. J Clin Endocrinol Metab. 2012;97:179–89.

    CAS  PubMed  Google Scholar 

  46. Tivesten A, Vandenput L, Labrie F, et al. Low serum testosterone and estradiol predict mortality in elderly men. J Clin Endocrinol Metab. 2009;94:2482–8.

    CAS  PubMed  Google Scholar 

  47. Yeap BB, Alfonso H, Chubb SAP, et al. In older men an optimal plasma testosterone is associated with reduced all-cause mortality, and higher dihydrotestosterone with reduced ischaemic heart disease mortality, while estradiol levels do not predict mortality. J Clin Endocrinol Metab. 2014;99:E9–18.

    PubMed  Google Scholar 

  48. Pye SR, Huhtaniemi IT, Finn JD, et al. Late-onset hypogonadism and mortality in ageing men. J Clin Endocrinol Metab. 2014;99:1357–66.

    CAS  PubMed  Google Scholar 

  49. Araujo AB, Dixon JM, Suarez EA, et al. Endogenous testosterone and mortality in men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96:3007–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. English KM, Steeds RP, Hugh Jones T, et al. Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina. A randomized, double-blind, placebo-controlled study. Circulation. 2000;102:1906–11.

    CAS  PubMed  Google Scholar 

  51. Mathur A, Malkin C, Saeed B, et al. Long-term benefits of testosterone replacement therapy on angina threshold and atheroma in men. Eur J Endocrinol. 2009;161:443–9.

    CAS  PubMed  Google Scholar 

  52. Cornoldi A, Caminiti G, Marazzi G, et al. Effects of chronic testosterone administration on myocardial ischemia, lipid metabolism and insulin resistance in elderly male diabetic patients with coronary artery disease. Int J Cardiol. 2010;142:50–5.

    PubMed  Google Scholar 

  53. Basaria S, Coviello AD, Travison TG, et al. Adverse events associated with testosterone administration. N Engl J Med. 2010;363:109–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Srinivas-Shankar U, Roberts SA, Connolly MJ, et al. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2010;95:639–50.

    CAS  PubMed  Google Scholar 

  55. Basaria S, Harman SM, Travison TG, et al. Effects of testosterone administration for 3 years on subclinical atherosclerosis progression in older men with low or low-normal testosterone levels. JAMA. 2015;314:570–81.

    CAS  PubMed  Google Scholar 

  56. Snyder PJ, Bhasin S, Cunningham GR, et al. Effects of testosterone treatment in older men. N Engl J Med. 2016;374:611–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cunningham GR, Toma SM. Why is androgen replacement in males controversial? J Clin Endocrinol Metab. 2011;96:38–52.

    CAS  PubMed  Google Scholar 

  58. Cunningham GR, Stephens-Shields AJ, Rosen RC, et al. Association of sex hormones with sexual function, vitality, and physical function of symptomatic older men with low testosterone levels at baseline in the Testosterone Trials. J Clin Endocrinol Metab. 2015;100:1146–55.

    CAS  PubMed  Google Scholar 

  59. Knuiman MW, Hung J, Divitini ML, Davis TM, Beilby JP. Utility of the metabolic syndrome and its components in the prediction of incident cardiovascular disease: a prospective cohort study. Eur J Cardiovasc Prev Rehab. 2009;16:235–41.

    Google Scholar 

  60. Haddad RM, Kennedy CC, Caples SM, et al. Testosterone and cardiovascular risk in men: a systematic review and meta-analysis of randomized placebo-controlled trials. Mayo Clin Proc. 2007;82:29–39.

    CAS  PubMed  Google Scholar 

  61. Fernandez-Balsells MM, Murad MH, Lane M, et al. Adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2010;95:2560–75.

    CAS  PubMed  Google Scholar 

  62. Xu L, Freeman G, Cowling BJ, Schooling CM. Testosterone therapy and cardiovascular events among men: a systematic review and meta-analysis of placebo-controlled randomized trials. BMC Med. 2013;11:108.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ruige JB, Ouwens DM, Kaufman J-M. Beneficial and adverse effects of testosterone on the cardiovascular system in men. J Clin Endocrinol Metab. 2013;98:4300–10.

    CAS  PubMed  Google Scholar 

  64. Corona G, Maseroli E, Rastrelli G, et al. Cardiovascular risk associated with testosterone-boosting medications: a systematic review and meta-analysis. Expert Opin Drug Saf. 2014;13:1327–51.

    CAS  PubMed  Google Scholar 

  65. Borst SE, Shuster JJ, Zou B, et al. Cardiovascular risks and elevation of serum DHT vary by route of testosterone administration: a systematic review and meta-analysis. BMC Med. 2014;12:211.

    PubMed  PubMed Central  Google Scholar 

  66. FDA Drug Safety Communication: FDA cautions about using testosterone products for low testosterone due to aging; requires labelling change to inform of possible increased risk of heart attack and stroke with use. http://www.fda.gov/Drugs/DrugSafety/ucm436259.htm. Accessed on Mar 2015.

  67. Engels EA, Schmid CH, Terrin N, et al. Heterogeneity and statistical significance in meta-analysis: an empirical study of 125 meta-analyses. Statist Med. 2000;19:1707–28.

    CAS  Google Scholar 

  68. Ioannidis J, Patsopoulos N, Evangelou E. Uncertainty in heterogeneity estimates in meta-analyses. BMJ. 2007;335:914–6.

    PubMed  PubMed Central  Google Scholar 

  69. Shores MM, Smith NL, Forsberg CW, et al. Testosterone treatment and mortality in men with low testosterone levels. J Clin Endocrinol Metab. 2012;97:2050–8.

    CAS  PubMed  Google Scholar 

  70. Muraleedharan V, Marsh H, Kapoor D, et al. Testosterone deficiency is associated with increased risk of mortality and testosterone replacement improves survival in men with type 2 diabetes. Eur J Endocrinol. 2013;169:725–33.

    CAS  PubMed  Google Scholar 

  71. Vigen R, O’Donnell CI, Baron AE, et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310:1829–36.

    CAS  PubMed  Google Scholar 

  72. Finkle WD, Greenland S, Ridgeway GK, et al. Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One. 2014;9:e85805.

    PubMed  PubMed Central  Google Scholar 

  73. Baillargeon J, Urban RJ, Kuo Y-F, et al. Risk of myocardial infarction in older men receiving testosterone therapy. Ann Pharmacother. 2014;48:1138–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharma R, Oni OA, Gupta K, et al. Normalization of testosterone level is associated with reduced incidence of myocardial infarction and mortality in men. Eur Heart J. 2015;36:2706–15.

    PubMed  Google Scholar 

  75. Anderson JL, May HT, Lappe DL, et al. Impact of testosterone replacement therapy on myocardial infarction, stroke and death in men with low testosterone concentrations in an integrated health care system. Am J Cardiol. 2016;117:794–9.

    CAS  PubMed  Google Scholar 

  76. Wu FCW. Caveat emptor: does testosterone treatment reduce mortality in men? J Clin Endocrinol Metab. 2012;97:1884–6.

    CAS  PubMed  Google Scholar 

  77. Traish AM, Guay AT, Morgentaler A. Death by testosterone? We think not! J Sex Med. 2014;11:624–9.

    PubMed  Google Scholar 

  78. Vigen R, O’Donnell CI, Baron AE, et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310:1829–36. Erratum published in JAMA 2014; 311:967.

    CAS  PubMed  Google Scholar 

  79. Smith GD, Ebrahim S, Lewis S, Hansell AI, Palmer LJ, Burton PR. Genetic epidemiology and public health: hope, hype, and future prospects. Lancet. 2005;366:1484–98.

    Google Scholar 

  80. Yeap BB, Knuiman MW, Divitini ML, Hui J, Arscott GM, Handelsman DJ, McLennan SV, Twigg SM, McQuillan B, Hung J, Beilby JP. Epidemiological and Mendelian randomisation studies of dihydrotestosterone and estradiol, and leucocyte telomere length in men. J Clin Endocrinol Metab. 2016;101:1299–306. doi:10.1210/jc.2015-4139.

  81. Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350:1193–8.

    CAS  PubMed  Google Scholar 

  82. Blackburn EH. Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chem Int Ed. 2010;49:7405–20.

    CAS  Google Scholar 

  83. Honig LS, Kang MS, Schupf N, Lee JH, Mayeux R. Association of shorter leukocyte telomere repeat length with dementia and mortality. Arch Neurol. 2012;69:1332–9.

    PubMed  PubMed Central  Google Scholar 

  84. Needham BL, Rehkopf D, Adler N, et al. Leukocyte telomere length and mortality in the National Health and Nutrition Examination Survey, 1999-2002. Epidemiology. 2015;26:528–35.

    PubMed  PubMed Central  Google Scholar 

  85. Friedrich U, Griese E-U, Schwab M, Fritz P, Thon K-P, Klotz U. Telomere length in different tissues of elderly patients. Mech Ageing Dev. 2000;119:89–99.

    CAS  PubMed  Google Scholar 

  86. Wilson WRW, Herbert KE, Mistry Y, et al. Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease. Eur Heart J. 2008;29:2689–94.

    CAS  PubMed  Google Scholar 

  87. Brouilette SW, Moore JS, McMahon AD, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet. 2007;369:107–14.

    CAS  PubMed  Google Scholar 

  88. D’Mello MJJ, Ross SA, Briel M, Anand SS, Gerstein H, Pare G. Association between shortened leukocyte telomere length and cardiometabolic outcomes. Systematic review and meta-analysis. Circ Cardiovasc Genet. 2015;8:82–90.

    PubMed  Google Scholar 

  89. Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95:2536–59.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Professor Matthew Knuiman, School of Population Health, University of Western Australia, for his advice with regard to power calculations for randomized controlled trials.

Disclosures

The author has received speaker honoraria and conference support from Bayer, Lilly, and Besins; participated on Advisory Boards for Lilly and Besins; and received research support from Bayer, Lilly, and Lawley Pharmaceuticals. The author is also a principal investigator in the Testosterone for the Prevention of Type 2 Diabetes in Men at High Risk (T4DM) trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bu B. Yeap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yeap, B.B. (2017). Testosterone and Cardiovascular Effects. In: Hohl, A. (eds) Testosterone. Springer, Cham. https://doi.org/10.1007/978-3-319-46086-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46086-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46084-0

  • Online ISBN: 978-3-319-46086-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics