Skip to main content

A Target-Based Foundation for the “Hard-Easy Effect” Bias

  • Conference paper
  • First Online:
Country Experiences in Economic Development, Management and Entrepreneurship

Part of the book series: Eurasian Studies in Business and Economics ((EBES,volume 5))

Abstract

The “hard-easy effect” is a well-known cognitive bias on self-confidence calibration that refers to a tendency to overestimate the probability of success in hard-perceived tasks, and to underestimate it in easy-perceived tasks. This paper provides a target-based foundation for this effect, and predicts its occurrence in the expected utility framework when utility functions are S-shaped and asymmetrically tailed. First, we introduce a definition of hard-perceived and easy-perceived task based on the mismatch between an uncertain target to meet and a suitably symmetric reference point. Second, switching from a target-based language to a utility-based language, we show how this maps to equivalence between the hard-perceived target/gain seeking and the easy-perceived target/loss aversion. Third, we characterize the agent’s miscalibration in self-confidence. Sufficient conditions for acting according to the “hard-easy effect” and the “reversed hard-easy effect” biases are set out. Finally, we derive sufficient conditions for the “hard-easy effect” and the “reversed hard-easy effect” to hold. As a by-product we identify situations in enterprise risk management where misconfidence in judgments emerges. Recognizing these cognitive biases, and being mindful of to be normatively influenced by them, gives the managers a better framework for decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A sufficient condition for inequality (b) is that the probability density f of T satisfies for some \( \zeta >\mathsf{0} \), \( \mathit{\mathsf{f}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)+\mathit{\mathsf{f}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)\ge \mathsf{0} \) for \( \mathsf{0}\le \mathit{\mathsf{x}}\le \zeta \) and \( \mathit{\mathsf{f}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)+\mathit{\mathsf{f}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)\le \mathsf{0} \) for \( \zeta <\mathit{\mathsf{x}}<\infty \), see Eq. (2.1) van Zwet (1979). The probability density f of any Pearson distribution of Type I to XII satisfies the above condition; see also Sato (1997).

References

  • Abadir, K. M. (2005). The mean-median-mode inequality: Counterexamples. Econometric Theory, 21(2), 477–482.

    Article  Google Scholar 

  • Abdous, B., & Theodorescu, R. (1998). Mean, median, mode IV. Statistica Neerlandica, 52, 356–359.

    Article  Google Scholar 

  • Berhold, M. H. (1973). The use of distribution functions to represent utility functions. Management Science, 19, 825–829.

    Article  Google Scholar 

  • Borch, K. (1968). Decision rules depending on the probability of ruin. Oxford Economic Papers, 20(1), 1–10.

    Article  Google Scholar 

  • Bordley, R., & LiCalzi, M. (2000). Decision analysis using targets instead of utility functions. Decisions in Economics and Finance, 23, 53–74.

    Article  Google Scholar 

  • Burks, S. V., Carpente, J. P., Goette, L., & Rustichini, A. (2013). Overconfidence and social signalling. Review of Economic Studies, 80(3), 949–983.

    Article  Google Scholar 

  • Castagnoli, E., & LiCalzi, M. (1996). Expected utility without utility. Theory and Decision, 41(3), 281–301.

    Article  Google Scholar 

  • Conine, T. E. (2014). Estimating the probability of meeting financial commitments: A behavioral finance perspective based on business simulations. Global Business and Organizational Excellence, 33, 6–13.

    Article  Google Scholar 

  • Giardini, F., Coricelli, G., Joffily, M., & Sirigu, A. (2008). Overconfidence in predictions as an effect of desirability bias. In M. Abdellaoui & J. D. Hey (Eds.), Advances in decision making under risk and uncertainty (Theory and Decision Library C, Vol. 42, pp. 163–180). Berlin: Springer.

    Chapter  Google Scholar 

  • Heath, C., Larrick, R., & Wu, G. (1999). Goals as reference points. Cognitive Psychology, 38, 79–109.

    Article  Google Scholar 

  • Hoffmann, A. O. I., Henry, S. F., & Kalogeras, N. (2013). Aspirations as reference points: An experimental investigation of risk behavior over time. Theory and Decision, 75, 193–210.

    Article  Google Scholar 

  • Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). Anomalies: The endowment effect, loss aversion, and status quo bias. The Journal of Economic Perspectives, 5, 193–206.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decisions under risk. Econometrica, 47(2), 263–291.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.

    Article  Google Scholar 

  • Kelly, T. (2004). Sunk costs, rationality, and acting for the sake of the past. Nous, 38(1), 60–85.

    Article  Google Scholar 

  • Lee, J. S., Keil, M., & Wong, K. F. E. (2015). The effect of goal difficulty on escalation of commitment. Journal of Behavioral Decision Making, 28(2), 114–129.

    Article  Google Scholar 

  • LiCalzi, M. (1999). A language for the construction of preferences under uncertainty. Revista de la Real Academia de Ciencias Exactas, Fìsicas y Naturales, 93, 439–450.

    Google Scholar 

  • Lichtenstein, S., & Fischhoff, B. (1977). Do those who know more also know more about how much they know? Organizational Behavior and Human Performance, 20(2), 159–183.

    Article  Google Scholar 

  • Lichtenstein, S., Fischhoff, B., & Phillips, L. D. (1982). Calibration of subjective probabilities: The state of the art up to 1980. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 306–334). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • McAfee, R. P., Mialon, H. M., & Mialon, S. H. (2010). Do sunk costs matter? Economic Inquiry, 48(2), 323–336.

    Article  Google Scholar 

  • Moore, D. A., & Healy, P. J. (2008). The trouble with overconfidence. Psychological Review, 115(2), 502–517.

    Article  Google Scholar 

  • Sacchi, S., & Stanca, L. (2014). Asymmetric perception of gains versus non-losses and losses versus non-gains: The causal role of regulatory focus. Journal of Behavioral Decision Making, 27(1), 48–56.

    Article  Google Scholar 

  • Sato, M. (1997). Some remarks on the mean, median, mode and skewness. Australian Journal Statistics, 39(2), 219–224.

    Article  Google Scholar 

  • Savage, L. J. (1954). The foundations of statistics. New York: Wiley.

    Google Scholar 

  • Thaler, R. (1980). Toward a positive theory of consumer choice. Journal of Economic Behavior and Organization, 1, 39–60.

    Article  Google Scholar 

  • van Zwet, W. R. (1979). Mean, median, mode II. Statistica Neerlandica, 33(1), 1–5.

    Article  Google Scholar 

  • von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior (2nd ed.). Princeton: Princeton University Press.

    Google Scholar 

  • Yates, J. F. (1990). Judgment and decision making. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Tibiletti .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Proposition 1

We will prove that if T is a hard-perceived/easy-perceived task with respect to m its opposite-perceived variable Y is an easy-perceived/hard-perceived task.

Let \( \overline{\mathit{\mathsf{T}}} \) a hard-perceived target with c.d.f. \( \overline{\mathit{\mathsf{u}}} \). Construct the variable Y with c.d.f. \( \underline {\mathit{\mathsf{u}}} \) such that \( \mathit{\mathsf{Y}}-\mathit{\mathsf{m}}=-\left(\overline{\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right) \). It follows that

$$ \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)=\mathsf{1}-\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)\kern0.75em \mathsf{f}\mathsf{o}\mathsf{r}\ \mathsf{all}\kern0.5em \mathit{\mathsf{x}}\ge \mathsf{0}. $$
(3)

In fact

$$ \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)=\mathit{\mathsf{P}}\left(\mathit{\mathsf{Y}}\le \mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)=\mathit{\mathsf{P}}\left(\mathit{\mathsf{Y}}-\mathit{\mathsf{m}}\le \mathit{\mathsf{x}}\right)=\mathit{\mathsf{P}}\left(-\left(\overline{\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)\le \mathit{\mathsf{x}}\right)=\mathit{\mathsf{P}}\left(\overline{\mathit{\mathsf{T}}}\ge \mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)=\mathsf{1}-\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right) $$

And analogously

$$ \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)=\mathsf{1}-\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)\kern0.5em \mathsf{f}\mathsf{o}\mathsf{r}\ \mathsf{all}\kern0.5em \mathit{\mathsf{x}}\ge \mathsf{0}. $$
(4)

Summing up (3) and (4), we get

$$ \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)+\underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)=\mathsf{1}-\left[\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)+\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)-\mathsf{1}\right] $$

Since \( \overline{T} \) is a hard-perceived target, then \( \left[\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)+\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)-\mathsf{1}\right]\ge \mathsf{0} \), so

\( \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)+\underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)\le \mathsf{1} \) for all \( \mathit{\mathsf{x}}\ge \mathsf{0} \),

Then by Definition 1(b) Y is an easy-perceived target.

The two opposite-perceived targets have the same median m. In fact, if \( \mathit{\mathsf{x}}=\mathsf{0} \), it follows \( \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}\right)=\mathsf{1}-\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}\right)=\mathsf{0.5} \). If T is an easy-perceived target, the relations are reversed and the opposite-perceived variable Y can be proved to be hard-perceived.

1.2 Proof of Theorem 3

Let \( \overline{\mathit{\mathsf{T}}} \) be a hard-perceived target with c.d.f. \( \overline{\mathit{\mathsf{u}}} \) and \( \underline {\mathit{\mathsf{T}}} \) its opposite-perceived variable with c.d.f. \( \underline {\mathit{\mathsf{u}}} \), such that \( \underline {\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}=-\left(\overline{\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right) \). We will prove that the relation between \( \overline{\mathit{\mathsf{u}}} \) and \( \underline {\mathit{\mathsf{u}}} \) switches at m. Specifically, \( \overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)\le \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right) \) and \( \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)\le \overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right) \) for any \( \mathit{\mathsf{x}}\ge \mathsf{0} \).

Abdous and Theodorescu (1998, Eq. (2), p. 357) set the equivalence between the van Zwet conditions (1979, (1.2), p. 1) and the first stochastic order between the two tails of T around m, it holds

\( \overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)+\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)<\mathsf{1} \) is equivalent to \( {\left(\underline {\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)}^{+}{\succ}_{\mathit{\mathsf{s}}\mathit{\mathsf{t}}}{\left(\underline {\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)}^{-} \) and

\( \overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)+\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)\ge \mathsf{1} \) is equivalent to \( {\left(\overline{\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)}^{-}{\succ}_{\mathit{\mathsf{s}}\mathit{\mathsf{t}}}{\left(\overline{\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)}^{+} \),

where \( {\mathit{\mathsf{X}}}^{\pm } \) denote the positive (negative) part of X.

Since \( \underline {\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}=-\left(\overline{\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right) \) we have \( {\left(\underline {\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)}^{+}={\left(-\left(\overline{\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)\right)}^{+}={\left(\overline{\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)}^{-} \), then

\( {\left(\overline{\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)}^{-}{\succ}_{\mathit{\mathsf{s}}\mathit{\mathsf{t}}}{\left(\underline {\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)}^{-} \), so \( \overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)\le \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right) \) for \( \mathit{\mathsf{x}}\ge \mathsf{0} \)

And since \( {\left(\overline{\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)}^{-}={\left(-\left(\underline {\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)\right)}^{-}={\left(\underline {\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)}^{+} \), we have

\( {\left(\underline {\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)}^{+}{\succ}_{\mathit{\mathsf{s}}\mathit{\mathsf{t}}}{\left(\overline{\mathit{\mathsf{T}}}-\mathit{\mathsf{m}}\right)}^{+} \), so \( \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)\le \overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right) \) for \( \mathit{\mathsf{x}}\ge \mathsf{0} \)

The above can be rewritten as \( \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{s}}\right)\le \overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{s}}\right) \) for \( s\le m \) and \( \overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{s}}\right)\ge \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{s}}\right) \) for \( \mathit{\mathsf{s}}\ge \mathit{\mathsf{m}} \).

Let \( {\mathit{\mathsf{u}}}_{\mathsf{0}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)=\frac{\underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)+\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)}{\mathsf{2}} \) for any x. By construction, it holds

\( \overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)\le {\mathit{\mathsf{u}}}_{\mathsf{0}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right)\le \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}-\mathit{\mathsf{x}}\right) \) and \( \overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)\ge {\mathit{\mathsf{u}}}_{\mathsf{0}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right)\ge \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{m}}+\mathit{\mathsf{x}}\right) \) for \( \mathit{\mathsf{x}}\ge \mathsf{0} \).

Let now quantify the probability that the lottery X outperforms the target T. Consider the lottery X such that:

(a) The outcomes of X belong on \( \left[\mathit{\mathsf{m}},+\infty \right) \) . Since \( \overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{s}}\right)={\mathit{\mathsf{u}}}_{\mathsf{0}}\left(\mathit{\mathsf{s}}\right)\le \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{s}}\right)=\mathsf{0} \) for all \( \mathit{\mathsf{s}}<\mathit{\mathsf{m}} \), following relation holds

\( \mathsf{E}\left(\underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{X}}\right)\right) < \mathsf{E}\left({\mathit{\mathsf{u}}}_{\mathsf{0}}\left(\mathit{\mathsf{X}}\right)\right)<\mathsf{E}\left(\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{X}}\right)\right) \).

Then

\( \mathit{\mathsf{P}}\left(\mathit{\mathsf{X}}\ge \underline {\mathit{\mathsf{T}}}\right)<\mathit{\mathsf{P}}\left(\mathit{\mathsf{X}}\ge {\mathit{\mathsf{T}}}_{\mathsf{0}}\right)<\mathit{\mathsf{P}}\left(\mathit{\mathsf{X}}\ge \overline{\mathit{\mathsf{T}}}\right) \).

So if the lottery X promises high stakes, all above or equal to the external reference point m, then the agent is prone to under confidence in easy-perceived tasks, and to overconfidence in hard-perceived tasks. That risk attitude follows the “hard-easy effect.”

(b) The outcomes of X belong on \( \left(-\infty, \mathit{\mathsf{m}}\right] \) . Since \( \overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{s}}\right)={\mathit{\mathsf{u}}}_{\mathsf{0}}\left(\mathit{\mathsf{s}}\right)\le \underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{s}}\right)=\mathsf{0} \) for all \( \mathit{\mathsf{s}}>\mathit{\mathsf{m}} \), following relation holds

\( \mathsf{E}\left(\overline{\mathit{\mathsf{u}}}\left(\mathit{\mathsf{X}}\right)\right) < \mathsf{E}\left({\mathit{\mathsf{u}}}_{\mathsf{0}}\left(\mathit{\mathsf{X}}\right)\right)<\mathsf{E}\left(\underline {\mathit{\mathsf{u}}}\left(\mathit{\mathsf{X}}\right)\right) \).

Then

\( \mathit{\mathsf{P}}\left(\mathit{\mathsf{X}}\ge \overline{\mathit{\mathsf{T}}}\right)<\mathit{\mathsf{P}}\left(\mathit{\mathsf{X}}\ge {\mathit{\mathsf{T}}}_{\mathsf{0}}\right)<\mathit{\mathsf{P}}\left(\mathit{\mathsf{X}}\ge \underline {\mathit{\mathsf{T}}}\right) \).

So if the lottery X promises bad outcomes, all below or equal to the external reference point m, then the agent is prone to under confidence in hard-perceived tasks, and to overconfidence in easy-perceived tasks. That risk attitude follows the “reversed hard-easy effect”.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bordley, R., Licalzi, M., Tibiletti, L. (2017). A Target-Based Foundation for the “Hard-Easy Effect” Bias. In: Bilgin, M., Danis, H., Demir, E., Can, U. (eds) Country Experiences in Economic Development, Management and Entrepreneurship. Eurasian Studies in Business and Economics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-46319-3_41

Download citation

Publish with us

Policies and ethics