Skip to main content

Dihydrodipicolinate Synthase: Structure, Dynamics, Function, and Evolution

  • Chapter
  • First Online:
Macromolecular Protein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 83))

Abstract

Enzymes are usually comprised of multiple subunits and more often than not they are made up of identical subunits. In this review we examine lysine biosynthesis and focus on the enzyme dihydrodipicolinate synthase in terms of its structure, function and the evolution of its varied number of subunits (quaternary structure). Dihydrodipicolinate synthase is the first committed step in the biosynthesis of lysine, which occurs naturally in plants, bacteria, archaea and fungi, but is not synthesized in mammals. In bacteria, there have been four separate pathways identified from tetrahydrodipicolinate to meso-diaminopimelate, which is the immediate precursor to lysine. Dihydrodipicolinate synthases from many bacterial and plant species have been structurally characterised and the results show considerable variability with respect to their quaternary structure, hinting at their evolution. The oligomeric state of the enzyme plays a key role, both in catalysis and in the allosteric regulation of the enzyme by lysine. While most bacteria and plants have tetrameric enzymes, where the structure of the dimeric building blocks is conserved, the arrangement of the dimers differs. We also review a key development in the field, namely the discovery of a human dihydrodipicolinate synthase-like enzyme, now known as 4-hydroxy-2-oxoglutarate aldolase . This discovery complicates the rationale underpinning drug development against bacterial dihydrodipicolinate synthases, since genetic errors in 4-hydroxy-2-oxoglutarate aldolase cause the disease Primary Hyperoxaluria Type 3 and therefore compounds that are geared towards the inhibition of bacterial dihydrodipicolinate synthase may be toxic to mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson SC, Dogovski C, Downton MT et al (2012) Crystal, solution and in silico structural studies of dihydrodipicolinate synthase from the common grapevine. PLoS One 7:e38318–e38319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson SC, Hor L, Dogovski C et al (2014) Identification of the bona fide DHDPS from a common plant pathogen. Proteins 82:1869–1883

    Article  CAS  PubMed  Google Scholar 

  • Bakhiet N, Forney FW, Stahly DP, Daniels L (1984) Lysine biosynthesis in Methanobacterium thermoautotrophicum is by the diaminopimelic acid pathway. Curr Microbiol 10:195–198

    Article  CAS  Google Scholar 

  • Barnes IJ, Bondi A, Moat AG (1969) Biochemical characterization of lysine auxotrophs of Staphylococcus aureus. J Bacteriol 99:169–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beck BB, Baasner A, Buescher A et al (2013) Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies. Eur J Hum Genet 21:162–172

    Article  CAS  PubMed  Google Scholar 

  • Belostotsky R, Seboun E, Idelson GH et al (2010) Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet 87:392–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blickling S, Beisel HG, Bozic D et al (1997a) Structure of dihydrodipicolinate synthase of Nicotiana sylvestris reveals novel quaternary structure. J Mol Biol 274:608–621

    Article  CAS  PubMed  Google Scholar 

  • Blickling S, Renner C, Laber B et al (1997b) Reaction mechanism of Escherichia coli dihydrodipicolinate synthase investigated by X-ray crystallography and NMR spectroscopy. Biochemistry 36:24–33

    Article  CAS  PubMed  Google Scholar 

  • Borthwick EB, Connell SJ, Tudor DW et al (1995) Escherichia coli dihydrodipicolinate synthase: characterization of the imine intermediate and the product of bromopyruvate treatment by electrospray mass spectrometry. Biochem J 305(Pt 2):521–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boughton BA, Dobson RCJ, Gerrard JA, Hutton CA (2008a) Conformationally constrained diketopimelic acid analogues as inhibitors of dihydrodipicolinate synthase. Bioorg Med Chem Lett 18:460–463

    Article  CAS  PubMed  Google Scholar 

  • Boughton BA, Griffin MDW, O’Donnell PA et al (2008b) Irreversible inhibition of dihydrodipicolinate synthase by 4-oxo-heptenedioic acid analogues. Bioorg Med Chem 16:9975–9983

    Article  CAS  PubMed  Google Scholar 

  • Boughton BA, Dobson RCJ, Hutton CA (2012) The crystal structure of dihydrodipicolinate synthase from Escherichia coli with bound pyruvate and succinic acid semialdehyde: unambiguous resolution of the stereochemistry of the condensation product. Proteins 80:2117–2122

    CAS  PubMed  Google Scholar 

  • Bunker RD (2010) Enzymes associated with the complications of diabetes mellitus. Ph.D. thesis, School of Biological Sciences, University of Auckland. https://researchspace.auckland.ac.nz/handle/2292/7142

  • Burgess BR, Dobson RCJ, Bailey MF et al (2008) Structure and evolution of a novel dimeric enzyme from a clinically important bacterial pathogen. J Biol Chem 283:27598–27603

    Article  CAS  PubMed  Google Scholar 

  • Cahyanto MN, Kawasaki H, Nagashio M et al (2006) Regulation of aspartokinase, aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase and dihydrodipicolinate reductase in Lactobacillus plantarum. Microbiology (Reading, England) 152:105–112

    Article  CAS  Google Scholar 

  • Cochat P, Rumsby G (2013) Primary hyperoxaluria. N Engl J Med 369:649–658

    Article  CAS  PubMed  Google Scholar 

  • Coulter CV, Gerrard JA, Kraunsoe JAE et al (1996) (S)-Aspartate semi-aldehyde: Synthetic and structural studies. Tetrahedron 52:7127–7136

    Article  CAS  Google Scholar 

  • Cox RJ (1996) The DAP pathway to lysine as a target for antimicrobial agents. Nat Prod Rep 13:29–43

    Article  CAS  PubMed  Google Scholar 

  • Cremer J, Treptow C, Eggeling L, Sahm H (1988) Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum. Microbiology (Reading, England) 134:3221–3229

    Article  CAS  Google Scholar 

  • Dekker EE, Kitson RP (1992) 2-Keto-4-hydroxyglutarate aldolase: purification and characterization of the homogeneous enzyme from bovine kidney. J Biol Chem 267:10507–10514

    CAS  PubMed  Google Scholar 

  • Dereppe C, Bold G, Ghisalba O et al (1992) Purification and characterization of dihydrodipicolinate synthase from pea. Plant Physiol 98:813–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devenish SRA, Gerrard JA (2009) The role of quaternary structure in (β/α)8-barrel proteins: evolutionary happenstance or a higher level of structure-function relationships? Org Biomol Chem 7:833–839

    Article  CAS  PubMed  Google Scholar 

  • Devenish SRA, Gerrard JA, Jameson GB, Dobson RCJ (2008) The high-resolution structure of dihydrodipicolinate synthase from Escherichia coli bound to its first substrate, pyruvate. Acta Crystallogr Sect F: Struct Biol Cryst Commun 64:1092–1095

    Article  CAS  Google Scholar 

  • Devenish SRA, Huisman FHA, Parker EJ et al (2009) Cloning and characterisation of dihydrodipicolinate synthase from the pathogen Neisseria meningitidis. Biochim Biophys Acta 1794:1168–1174

    Article  CAS  PubMed  Google Scholar 

  • Dobson RCJ, Gerrard JA, Pearce FG (2004a) Dihydrodipicolinate synthase is not inhibited by its substrate, (S)-aspartate β-semialdehyde. Biochem J 377:757–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson RCJ, Griffin MDW, Roberts SJ, Gerrard JA (2004b) Dihydrodipicolinate synthase (DHDPS) from Escherichia coli displays partial mixed inhibition with respect to its first substrate, pyruvate. Biochimie 86:311–315. doi:10.1016/j.biochi.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  • Dobson RCJ, Valegård K, Gerrard JA (2004c) The crystal structure of three site-directed mutants of Escherichia coli dihydrodipicolinate synthase: further evidence for a catalytic triad. J Mol Biol 338:329–339

    Article  CAS  PubMed  Google Scholar 

  • Dobson RCJ, Griffin MDW, Jameson GB, Gerrard JA (2005) The crystal structures of native and (S)-lysine-bound dihydrodipicolinate synthase from Escherichia coli with improved resolution show new features of biological significance. Acta Crystallogr D Biol Crystallogr 61:1116–1124

    Article  PubMed  Google Scholar 

  • Dobson RCJ, Griffin MDW, Devenish SRA et al (2008) Conserved main-chain peptide distortions: a proposed role for Ile203 in catalysis by dihydrodipicolinate synthase. Protein Sci 17:2080–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson RCJ, Girón I, Hudson AO (2011) L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development. PLoS One 6:e20439–e20413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dogovski C, Atkinson SC, Dommaraju SR et al (2009) Lysine biosynthesis in bacteria: an unchartered pathway for novel antibiotic design. Encycl Life Support Syst 11:116–136

    Google Scholar 

  • Domigan LJ, Scally SW, Fogg MJ et al (2009) Characterisation of dihydrodipicolinate synthase (DHDPS) from Bacillus anthracis. Biochim Biophys Acta 1794:1510–1516

    Article  CAS  PubMed  Google Scholar 

  • Evans G, Schuldt L, Griffin MDW et al (2011) A tetrameric structure is not essential for activity in dihydrodipicolinate synthase (DHDPS) from Mycobacterium tuberculosis. Arch Biochem Biophys 512:154–159

    Article  CAS  PubMed  Google Scholar 

  • Frisch DA, Gengenbach BG, Tommey AM et al (1991) Isolation and characterization of dihydrodipicolinate synthase from maize. Plant Physiol 96:444–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galili G (2011) The aspartate-family pathway of plants: linking production of essential amino acids with energy and stress regulation. Plant Signal Behav 6:192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girish TS, Sharma E, Gopal B (2008) Structural and functional characterization of Staphylococcus aureus dihydrodipicolinate synthase. FEBS Lett 582:2923–2930

    Article  CAS  PubMed  Google Scholar 

  • Goodsell DS, Olson AJ (2000) Structural symmetry and protein function. Annu Rev Biophys Biomol Struct 29:105–153

    Article  CAS  PubMed  Google Scholar 

  • Griffin MDW, Gerrard JA (2012) The relationship between oligomeric state and protein function. Adv Exp Med Biol 747:74–90

    Article  CAS  PubMed  Google Scholar 

  • Griffin MDW, Dobson RCJ, Pearce FG et al (2008) Evolution of quaternary structure in a homotetrameric enzyme. J Mol Biol 380:691–703

    Article  CAS  PubMed  Google Scholar 

  • Griffin MDW, Dobson RCJ, Gerrard JA, Perugini MA (2010) Exploring the dihydrodipicolinate synthase tetramer: how resilient is the dimer–dimer interface? Arch Biochem Biophys 494:58–63

    Article  CAS  PubMed  Google Scholar 

  • Griffin MDW, Billakanti JM, Wason A et al (2012) Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana. PLoS One 7:e40318–e40312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo BBB, Devenish SRA, Dobson RCJ et al (2009) The C-terminal domain of Escherichia coli dihydrodipicolinate synthase (DHDPS) is essential for maintenance of quaternary structure and efficient catalysis. Biochem Biophys Res Commun 380:802–806

    Article  CAS  PubMed  Google Scholar 

  • Hoganson DA, Stahly DP (1975) Regulation of dihydrodipicolinate synthase during growth and sporulation of Bacillus cereus. J Bacteriol 124:1344–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopp K, Cogal AG, Bergstralh EJ et al (2015) Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J Am Soc Nephrol 26:2559–2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson AO, Singh BK, Leustek T, Gilvarg C (2006) An LL-diaminopimelate aminotransferase defines a novel variant of the lysine biosynthesis pathway in plants. Plant Physiol 140:292–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson AO, Klartag A, Gilvarg C et al (2011) Dual diaminopimelate biosynthesis pathways in Bacteroides fragilis and Clostridium thermocellum. Biochim Biophys Acta 1814:1162–1168

    Article  CAS  PubMed  Google Scholar 

  • Hutton CA, Perugini MA, Gerrard JA (2007) Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Mol BioSyst 3:458–465

    Article  CAS  PubMed  Google Scholar 

  • Jander G, Joshi V (2009) Aspartate-derived amino acid biosynthesis in Arabidopsis thaliana. Arabidopsis Book 7:e0121

    Article  PubMed  PubMed Central  Google Scholar 

  • Jander G, Joshi V (2010) Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants. Mol Plant 3:54–65

    Article  CAS  PubMed  Google Scholar 

  • Karsten WE (1997) Dihydrodipicolinate synthase from Escherichia coli: pH dependent changes in the kinetic mechanism and kinetic mechanism of allosteric inhibition by L-lysine. Biochemistry 36:1730–1739

    Article  CAS  PubMed  Google Scholar 

  • Kefala G, Evans GL, Griffin MDW et al (2008) Crystal structure and kinetic study of dihydrodipicolinate synthase from Mycobacterium tuberculosis. Biochem J 411:351–310

    Article  CAS  PubMed  Google Scholar 

  • Kelland JG, Palcic MM, Pickard MA, Vederas JC (1985) Stereochemistry of lysine formation by meso-diaminopimelate decarboxylase from wheat germ: use of proton-carbon-13 NMR shift correlation to detect stereospecific deuterium labeling. Biochemistry 24:3263–3267

    Article  CAS  PubMed  Google Scholar 

  • Kindler SH, Gilvarg C (1960) N-Succinyl-L-2,6-diaminopimelic acid deacylase. J Biol Chem 235:3532–3535

    CAS  PubMed  Google Scholar 

  • Kumpaisal R, Hashimoto T, Yamada Y (1987) Purification and characterization of dihydrodipicolinate synthase from wheat suspension cultures. Plant Physiol 85:145–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laber B, Gomis-Rüth FX, Romão MJ, Huber R (1992) Escherichia coli dihydrodipicolinate synthase. Identification of the active site and crystallization. Biochem J 288(Pt 2):691–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Knight J, Todd Lowther W, Holmes RP (2015) Hydroxyproline metabolism in a mouse model of Primary Hyperoxaluria Type 3. Biochim Biophys Acta 1852:2700–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YK, Myhrman R, Schrag ML, Gelb MH (1988) Bacterial N-succinyl-L-diaminopimelic acid desuccinylase. Purification, partial characterization, and substrate specificity. J Biol Chem 263:1622–1627

    CAS  PubMed  Google Scholar 

  • Lynch M (2013) Evolutionary diversification of the multimeric states of proteins. Proc Natl Acad Sci U S A 110:E2821–E2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald JR, Huang AD, Loomes K (2016) Cellular degradation of 4-hydroxy-2-oxoglutarate aldolase leads to absolute deficiency in Primary Hyperoxaluria Type 3. FEBS Lett 590(10):1467–1476

    Article  CAS  PubMed  Google Scholar 

  • Matthews BF, Widholm JM (1979) Expression of aspartokinase, dihydrodipicolinic acid synthase and homoserine dehydrogenase during growth of carrot cell suspension cultures on lysine- and threonine-supplemented media. Zeitschrift für Naturforschung Section C: Biosciences 34:1177–1185

    CAS  Google Scholar 

  • McCoy AJ, Adams NE, Hudson AO et al (2006) L,L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc Natl Acad Sci 103:17909–17914. doi:10.1073/pnas.0608643103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirwaldt C, Korndörfer I, Huber R (1995) The crystal structure of dihydrodipicolinate synthase from Escherichia coli at 2.5 A resolution. J Mol Biol 246:227–239

    Article  CAS  PubMed  Google Scholar 

  • Mitsakos V, Dobson RCJ, Pearce FG et al (2008) Inhibiting dihydrodipicolinate synthase across species: towards specificity for pathogens? Bioorg Med Chem Lett 18:842–844

    Article  CAS  PubMed  Google Scholar 

  • Monico CG, Rossetti S, Belostotsky R et al (2011) Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol 6:2289–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muscroft-Taylor AC, Soares da Costa TP, Gerrard JA (2010) New insights into the mechanism of dihydrodipicolinate synthase using isothermal titration calorimetry. Biochimie 92:254–262

    Article  CAS  PubMed  Google Scholar 

  • Pearce FG, Dobson RCJ, Jameson GB et al (2011) Characterization of monomeric dihydrodipicolinate synthase variant reveals the importance of substrate binding in optimizing oligomerization. Biochim Biophys Acta Protein Proteomics 1814:1900–1909

    Article  CAS  Google Scholar 

  • Perham RN (1975) Self-assembly of biological macromolecules. Philos Trans R Soc Lond Ser B Biol Sci 272:123–136

    Article  CAS  Google Scholar 

  • Perutz MF (1989) Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys 22:139–237

    Article  CAS  PubMed  Google Scholar 

  • Peterkofsky B, Gilvarg C (1961) N-Succinyl-L-diaminopimelic-glutamic transaminase. J Biol Chem 236:1432–1438

    CAS  PubMed  Google Scholar 

  • Phenix CP, Palmer DRJ (2008) Isothermal titration microcalorimetry reveals the cooperative and noncompetitive nature of inhibition of Sinorhizobium meliloti L5-30 dihydrodipicolinate synthase by (S)-lysine. Biochemistry 47:7779–7781

    Article  CAS  PubMed  Google Scholar 

  • Phillips R, Kondev J, Theriot J, Garcia H (2012) Physical biology of the cell, 2nd edn. New York, Garland Science

    Google Scholar 

  • Reboul CF, Porebski BT, Griffin MDW et al (2012) Structural and dynamic requirements for optimal activity of the essential bacterial enzyme dihydrodipicolinate synthase. PLoS Comput Biol 8:e1002537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel TJ, Johnson LC, Knight J et al (2011) Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria. PLoS One 6:e26021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel TJ, Knight J, Murray MS et al (2012) 4-Hydroxy-2-oxoglutarate aldolase inactivity in primary hyperoxaluria type 3 and glyoxylate reductase inhibition. Biochim Biophys Acta 1822:1544–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts SJ, Morris JC, Dobson RCJ, Gerrard JA (2003) The preparation of (S)-aspartate semi-aldehyde appropriate for use in biochemical studies. Bioorg Med Chem Lett 13:265–267

    Article  CAS  PubMed  Google Scholar 

  • Rose WC (1949) Amino acid requirements of man. Fed Proc 8:546–552

    CAS  PubMed  Google Scholar 

  • Scapin G, Blanchard JS (1998) Enzymology of bacterial lysine biosynthesis. Adv Enzymol Relat Areas Mol Biol 72:279–324

    CAS  PubMed  Google Scholar 

  • Scapin G, Cirilli M, Reddy SG et al (1998) Substrate and inhibitor binding sites in Corynebacterium glutamicum diaminopimelate dehydrogenase. Biochemistry 37:3278–3285

    Article  CAS  PubMed  Google Scholar 

  • Simms SA, Voige WH, Gilvarg C (1984) Purification and characterization of succinyl-CoA: tetrahydrodipicolinate N-succinyltransferase from Escherichia coli. J Biol Chem 259:2734–2741

    CAS  PubMed  Google Scholar 

  • Skovpen YV, Conly CJT, Sanders DAR, Palmer DRJ (2016) Biomimetic design results in a potent allosteric inhibitor of dihydrodipicolinate synthase from Campylobacter jejuni. J Am Chem Soc 138:2014–2020

    Article  CAS  PubMed  Google Scholar 

  • Soares da Costa TP, Muscroft-Taylor AC, Dobson RCJ et al (2010) How essential is the “essential” active-site lysine in dihydrodipicolinate synthase? Biochimie 92:837–845

    Article  CAS  PubMed  Google Scholar 

  • Stahly DP (1969) Dihydrodipicolinic acid synthase of Bacillus licheniformis. Biochim Biophys Acta Enzymol 191:439–451

    Article  CAS  Google Scholar 

  • Turner JJ, Healy JP, Dobson RCJ et al (2005) Two new irreversible inhibitors of dihydrodipicolinate synthase: diethyl (E,E)-4-oxo-2,5-heptadienedioate and diethyl (E)-4-oxo-2-heptenedioate. Bioorg Med Chem Lett 15:995–998

    Article  CAS  PubMed  Google Scholar 

  • Tyagi VVS, Henke RR, Farkas WR (1982) Occurrence of diaminopimelic epimerase in maize. Biochim Biophys Acta Gen Subj 719:363–369

    Article  CAS  Google Scholar 

  • Voss JE, Scally SW, Taylor NL et al (2010) Substrate-mediated stabilization of a tetrameric drug target reveals Achilles heel in anthrax. J Biol Chem 285:5188–5195

    Article  CAS  PubMed  Google Scholar 

  • Wallsgrove RM, Mazelis M (1980) The enzymology of lysine biosynthesis in higher plants: complete localization of the regulatory enzyme dihydrodipicolinate synthase in the chloroplasts of spinach leaves. FEBS Lett 116:189–192

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhao X, Wang X et al (2015) Two novel HOGA1 splicing mutations identified in a Chinese patient with primary hyperoxaluria type 3. Am J Nephrol 42:78–84

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Clay MD, van Belkum MJ et al (2011) The structure of LL-diaminopimelate aminotransferase from Chlamydia trachomatis: implications for its broad substrate specificity. J Mol Biol 411:649–660

    Article  CAS  PubMed  Google Scholar 

  • Webster FH, Lechowich RV (1970) Partial purification and characterization of dihydrodipicolinic acid synthetase from sporulating Bacillus megaterium. J Bacteriol 101:118–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberger S, Gilvarg C (1970) Bacterial distribution of the use of succinyl and acetyl blocking groups in diaminopimelic acid biosynthesis. J Bacteriol 101:323–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Kelly B (1965) Purification and properties of diaminopimelate decarboxylase from Escherichia coli. Biochem J 96:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams EL, Bockenhauer D, van't Hoff WG et al (2012) The enzyme 4-hydroxy-2-oxoglutarate aldolase is deficient in primary hyperoxaluria type 3. Nephrol Dial Transplant 27:3191–3195

    Article  CAS  PubMed  Google Scholar 

  • Wiseman JS, Nichols JS (1984) Purification and properties of diaminopimelic acid epimerase from Escherichia coli. J Biol Chem 259:8907–8914

    CAS  PubMed  Google Scholar 

  • Wolterink-van Loo S, Levisson M, Cabrières MC et al (2008) Characterization of a thermostable dihydrodipicolinate synthase from Thermoanaerobacter tengcongensis. Extremophiles 12:461–469

    Article  CAS  PubMed  Google Scholar 

  • Yamakura F, Ikeda Y, Kimura K, Sasakawa T (1974) Partial purification and some properties of pyruvate-aspartic semialdehyde condensing enzyme from sporulating Bacillus subtilis. J Biochem 76:611–621

    Article  CAS  PubMed  Google Scholar 

  • Yugari Y, Gilvarg C (1965) The condensation step in diaminopimelate synthesis. J Biol Chem 240:4710–4716

    CAS  PubMed  Google Scholar 

  • Zabriskie TM, Jackson MD (2000) Lysine biosynthesis and metabolism in fungi. Nat Prod Rep 17:85–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AOH acknowledges the College of Science and the Thomas H. Gosnell School of Life Sciences at the Rochester Institute of Technology for ongoing support. RCJD acknowledges the following for funding support, in part: (1) the Ministry of Business, Innovation and Employment (contract UOCX1208); (2) the New Zealand Royal Society Marsden Fund (contract UOC1013) and (3) the US Army Research Laboratory and US Army Research Office under contract/grant number W911NF-11-1-0481.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renwick C. J. Dobson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grant Pearce, F., Hudson, A.O., Loomes, K., Dobson, R.C.J. (2017). Dihydrodipicolinate Synthase: Structure, Dynamics, Function, and Evolution. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes. Subcellular Biochemistry, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-46503-6_10

Download citation

Publish with us

Policies and ethics