Skip to main content

The Peroxiredoxin Family: An Unfolding Story

  • Chapter
  • First Online:
Macromolecular Protein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 83))

Abstract

Peroxiredoxins (Prxs) are a large and conserved family of peroxidases that are considered to be the primary cellular guardians against oxidative stress in all living organisms. Prxs share a thioredoxin fold and contain a highly-reactive peroxidatic cysteine in a specialised active-site environment that is able to reduce their peroxide substrates. The minimal functional unit for Prxs are either monomers or dimers, but many dimers assemble into decameric rings. Ring structures can further form a variety of high molecular weight complexes. Many eukaryotic Prxs contain a conserved GGLG and C-terminal YF motif that confer sensitivity to elevated levels of peroxide, leading to hyperoxidation and inactivation. Inactive forms of Prxs can be re-reduced by the enzyme sulfiredoxin, in an ATP-dependent reaction. Cycles of hyperoxidation and reactivation are considered to play an integral role in a variety of H2O2-mediated cell signalling pathways in both stress and non-stress conditions. Prxs are also considered to exhibit chaperone-like properties when cells are under oxidative or thermal stress. The roles of various types of covalent modifications, e.g. acetylation and phosphorylation are also discussed. The ability of Prxs to assemble into ordered arrays such as nanotubes is currently being exploited in nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelucci F, Saccoccia F, Ardini M, Boumis G, Brunori M, Di Leandro L, Ippoliti R, Miele AE, Natoli G, Scotti S, Bellelli A (2013) Switching between the alternative structures and functions of a 2-Cys peroxiredoxin, by site-directed mutagenesis. J Mol Biol 425(22):4556–4568. doi:10.1016/j.jmb.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  • Ardini M, Giansanti F, Di Leandro L, Pitari G, Cimini A, Ottaviano L, Donarelli M, Santucci S, Angelucci F, Ippoliti R (2014) Metal-induced self-assembly of peroxiredoxin as a tool for sorting ultrasmall gold nanoparticles into one-dimensional clusters. Nanoscale 6(14):8052–8061. doi:10.1039/c4nr01526f

    Article  CAS  PubMed  Google Scholar 

  • Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425(6961):980–984. doi:10.1038/nature02075

    Article  CAS  PubMed  Google Scholar 

  • Calvo IA, Boronat S, Domenech A, Garcia-Santamarina S, Ayte J, Hidalgo E (2013) Dissection of a redox relay: H2O2-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle. Cell Rep 5(5):1413–1424. doi:10.1016/j.celrep.2013.11.027

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Roszak AW, Gourlay LJ, Lindsay JG, Isaacs NW (2005) Bovine mitochondrial peroxiredoxin III forms a two-ring catenane. Structure 13(11):1661–1664. doi:S0969–2126(05)00312–6 [pii], 10.1016/j.str.2005.07.021

  • Cao Z, Bhella D, Lindsay JG (2007) Reconstitution of the mitochondrial PrxIII antioxidant defence pathway: general properties and factors affecting PrxIII activity and oligomeric state. J Mol Biol 372(4):1022–1033. doi:10.1016/j.jmb.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Tavender TJ, Roszak AW, Cogdell RJ, Bulleid NJ (2011) Crystal structure of reduced and of oxidized peroxiredoxin IV enzyme reveals a stable oxidized decamer and a non-disulfide-bonded intermediate in the catalytic cycle. J Biol Chem 286(49):42257–42266. doi:10.1074/jbc.M111.298810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Z, Subramaniam S, Bulleid NJ (2014) Lack of an efficient endoplasmic reticulum-localized recycling system protects peroxiredoxin IV from hyperoxidation. J Biol Chem 289(9):5490–5498. doi:10.1074/jbc.M113.529305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Z, McGow DP, Shepherd C, Lindsay JG (2015) Improved catenated structures of bovine peroxiredoxin III F190L reveal details of ring-ring interactions and a novel conformational state. PLoS One 10(4):e0123303. doi:10.1371/journal.pone.0123303

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha MK, Suh KH, Kim IH (2009) Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma. J Exp Clin Cancer Res 28:93. doi:10.1186/1756-9966-28-93

    Article  PubMed  PubMed Central  Google Scholar 

  • Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG (1994) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A 91(15):7017–7021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang XZ, Li DQ, Hou YF, Wu J, Lu JS, Di GH, Jin W, Ou ZL, Shen ZZ, Shao ZM (2007) Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast Cancer Res 9(6):R76. doi:10.1186/bcr1789

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiarugi P, Cirri P (2003) Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 28(9):509–514. doi:10.1016/S0968-0004(03)00174-9

    Article  CAS  PubMed  Google Scholar 

  • Day AM, Brown JD, Taylor SR, Rand JD, Morgan BA, Veal EA (2012) Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival. Mol Cell 45(3):398–408. doi:10.1016/j.molcel.2011.11.027

    Article  CAS  PubMed  Google Scholar 

  • Declercq JP, Evrard C, Clippe A, Stricht DV, Bernard A, Knoops B (2001) Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 Ã… resolution. J Mol Biol 311(4):751–759. doi:10.1006/jmbi.2001.4853

    Article  CAS  PubMed  Google Scholar 

  • Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA, Maywood ES, Hastings MH, Baliga NS, Merrow M, Millar AJ, Johnson CH, Kyriacou CP, O'Neill JS, Reddy AB (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485(7399):459–464. doi:10.1038/nature11088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gourlay LJ, Bhella D, Kelly SM, Price NC, Lindsay JG (2003) Structure-function analysis of recombinant substrate protein 22 kDa (SP-22). A mitochondrial 2-CYS peroxiredoxin organized as a decameric toroid. J Biol Chem 278(35):32631–32637. doi:10.1074/jbc.M303862200, M303862200 [pii]

  • Hall A, Parsonage D, Poole LB, Karplus PA (2010) Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J Mol Biol 402(1):194–209. doi:10.1016/j.jmb.2010.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanzen S, Vielfort K, Yang J, Roger F, Andersson V, Zamarbide-Fores S, Andersson R, Malm L, Palais G, Biteau B, Liu B, Toledano MB, Molin M, Nystrom T (2016) Lifespan control by redox-dependent recruitment of chaperones to misfolded proteins. Cell. doi:10.1016/j.cell.2016.05.006

    PubMed  Google Scholar 

  • Haynes AC, Qian J, Reisz JA, Furdui CM, Lowther WT (2013) Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation. J Biol Chem 288(41):29714–29723. doi:10.1074/jbc.M113.473470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Kimura S, Seto K, Warabi E, Kawachi Y, Shoda J, Tabuchi K, Yamagata K, Hasegawa S, Bukawa H, Ishii T, Yanagawa T (2014) Peroxiredoxin I plays a protective role against UVA irradiation through reduction of oxidative stress. J Dermatol Sci 74(1):9–17. doi:10.1016/j.jdermsci.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  • Iuchi Y, Okada F, Tsunoda S, Kibe N, Shirasawa N, Ikawa M, Okabe M, Ikeda Y, Fujii J (2009) Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J 419(1):149–158. doi:10.1042/BJ20081526

    Article  CAS  PubMed  Google Scholar 

  • Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW, Choi YO, Kim WY, Kang JS, Cheong GW, Yun DJ, Rhee SG, Cho MJ, Lee SY (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117(5):625–635. doi:10.1016/j.cell.2004.05.002, S0092867404004878 [pii]

  • Jang HH, Kim SY, Park SK, Jeon HS, Lee YM, Jung JH, Lee SY, Chae HB, Jung YJ, Lee KO, Lim CO, Chung WS, Bahk JD, Yun DJ, Cho MJ, Lee SY (2006) Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular chaperone functions. FEBS Lett 580(1):351–355. doi:10.1016/j.febslet.2005.12.030

    Article  CAS  PubMed  Google Scholar 

  • Jonsson TJ, Johnson LC, Lowther WT (2008) Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace. Nature 451(7174):98–101. doi:10.1038/nature06415

    Article  PubMed  PubMed Central  Google Scholar 

  • Kil IS, Lee SK, Ryu KW, Woo HA, Hu MC, Bae SH, Rhee SG (2012) Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol Cell 46(5):584–594. doi:10.1016/j.molcel.2012.05.030

    Article  CAS  PubMed  Google Scholar 

  • Klichko VI, Orr WC, Radyuk SN (2016) The role of peroxiredoxin 4 in inflammatory response and aging. Biochim Biophys Acta 1862(2):265–273. doi:10.1016/j.bbadis.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  • Konig J, Baier M, Horling F, Kahmann U, Harris G, Schurmann P, Dietz KJ (2002) The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc Natl Acad Sci U S A 99(8):5738–5743. doi:10.1073/pnas.072644999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latimer HR, Veal EA (2016) Peroxiredoxins in regulation of MAPK signalling pathways; sensors and barriers to signal transduction. Mol Cells 39(1):40–45. doi:10.14348/molcells.2016.2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TH, Kim SU, Yu SL, Kim SH, Park DS, Moon HB, Dho SH, Kwon KS, Kwon HJ, Han YH, Jeong S, Kang SW, Shin HS, Lee KK, Rhee SG, Yu DY (2003) Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 101(12):5033–5038. doi:10.1182/blood-2002-08-2548

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Chung JM, Yun HJ, Won J, Jung HS (2016) New insight into multifunctional role of peroxiredoxin family protein: determination of DNA protection properties of bacterioferritin comigratory protein under hyperthermal and oxidative stresses. Biochem Biophys Res Commun 469(4):1028–1033. doi:10.1016/j.bbrc.2015.12.099

    Article  CAS  PubMed  Google Scholar 

  • Li S, Peterson NA, Kim MY, Kim CY, Hung LW, Yu M, Lekin T, Segelke BW, Lott JS, Baker EN (2005) Crystal structure of AhpE from mycobacterium tuberculosis, a 1-Cys peroxiredoxin. J Mol Biol 346(4):1035–1046. doi:10.1016/j.jmb.2004.12.046

    Article  CAS  PubMed  Google Scholar 

  • Li L, Kaifu T, Obinata M, Takai T (2009) Peroxiredoxin III-deficiency sensitizes macrophages to oxidative stress. J Biochem 145(4):425–427. doi:10.1093/jb/mvp011

    Article  CAS  PubMed  Google Scholar 

  • Lindsay H, Beaumont E, Richards SD, Kelly SM, Sanderson SJ, Price NC, Lindsay JG (2000) FAD insertion is essential for attaining the assembly competence of the dihydrolipoamide dehydrogenase (E3) monomer from Escherichia coli. J Biol Chem 275(47):36665–36670. doi:10.1074/jbc.M004777200

    Article  CAS  PubMed  Google Scholar 

  • MacDiarmid CW, Taggart J, Kerdsomboon K, Kubisiak M, Panascharoen S, Schelble K, Eide DJ (2013) Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast. J Biol Chem 288(43):31313–31327. doi:10.1074/jbc.M113.512384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissner U, Schroder E, Scheffler D, Martin AG, Harris JR (2007) Formation, TEM study and 3D reconstruction of the human erythrocyte peroxiredoxin-2 dodecahedral higher-order assembly. Micron 38(1):29–39. doi:10.1016/j.micron.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  • Mitsumoto A, Nakagawa Y, Takeuchi A, Okawa K, Iwamatsu A, Takanezawa Y (2001) Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic Res 35(3):301–310

    Article  CAS  PubMed  Google Scholar 

  • Moon JC, Hah YS, Kim WY, Jung BG, Jang HH, Lee JR, Kim SY, Lee YM, Jeon MG, Kim CW, Cho MJ, Lee SY (2005) Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J Biol Chem 280(31):28775–28784. doi:10.1074/jbc.M505362200

    Article  CAS  PubMed  Google Scholar 

  • Morinaka A, Funato Y, Uesugi K, Miki H (2011) Oligomeric peroxiredoxin-I is an essential intermediate for p53 to activate MST1 kinase and apoptosis. Oncogene 30(40):4208–4218. doi:10.1038/onc.2011.139

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay SS, Leung KS, Hicks MJ, Hastings PJ, Youssoufian H, Plon SE (2006) Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia. J Cell Biol 175(2):225–235. doi:10.1083/jcb.200607061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musicco C, Capelli V, Pesce V, Timperio AM, Calvani M, Mosconi L, Zolla L, Cantatore P, Gadaleta MN (2009) Accumulation of overoxidized Peroxiredoxin III in aged rat liver mitochondria. Biochim Biophys Acta 1787(7):890–896. doi:10.1016/j.bbabio.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  • Nelson KJ, Knutson ST, Soito L, Klomsiri C, Poole LB, Fetrow JS (2011) Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 79(3):947–964. doi:10.1002/prot.22936

    Article  CAS  PubMed  Google Scholar 

  • Netto LE, Antunes F (2016) The roles of peroxiredoxin and thioredoxin in hydrogen peroxide sensing and in signal transduction. Mol Cells 39(1):65–71. doi:10.14348/molcells.2016.2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Van Etten RA (2003) Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424(6948):561–565. doi:10.1038/nature01819

    Article  CAS  PubMed  Google Scholar 

  • Nielsen MH, Kidmose RT, Jenner LB (2016) Structure of TSA2 reveals novel features of the active-site loop of peroxiredoxins. Acta Crystallogr Sect D, Struct Biol 72(Pt 1):158–167. doi:10.1107/S2059798315023815

    Article  CAS  Google Scholar 

  • Noh YH, Baek JY, Jeong W, Rhee SG, Chang TS (2009) Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J Biol Chem 284(13):8470–8477. doi:10.1074/jbc.M808981200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JW, Piszczek G, Rhee SG, Chock PB (2011) Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity. Biochemistry 50(15):3204–3210. doi:10.1021/bi101373h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmigiani RB, Xu WS, Venta-Perez G, Erdjument-Bromage H, Yaneva M, Tempst P, Marks PA (2008) HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci U S A 105(28):9633–9638. doi:10.1073/pnas.0803749105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsonage D, Karplus PA, Poole LB (2008) Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. Proc Natl Acad Sci U S A 105(24):8209–8214. doi:10.1073/pnas.0708308105

    Article  CAS  PubMed  Google Scholar 

  • Perkins A, Nelson KJ, Williams JR, Parsonage D, Poole LB, Karplus PA (2013) The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin. Biochemistry 52(48):8708–8721. doi:10.1021/bi4011573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA (2015) Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 40(8):435–445. doi:10.1016/j.tibs.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB, Winterbourn CC (2007) The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents. J Biol Chem 282(16):11885–11892. doi:10.1074/jbc.M700339200

    Article  CAS  PubMed  Google Scholar 

  • Peskin AV, Dickerhof N, Poynton RA, Paton LN, Pace PE, Hampton MB, Winterbourn CC (2013) Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. J Biol Chem 288(20):14170–14177. doi:10.1074/jbc.M113.460881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phalen TJ, Weirather K, Deming PB, Anathy V, Howe AK, van der Vliet A, Jonsson TJ, Poole LB, Heintz NH (2006) Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J Cell Biol 175(5):779–789. doi:10.1083/jcb.200606005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AJ, Littlejohn J, Yewdall NA, Zhu T, Valery C, Pearce FG, Mitra AK, Radjainia M, Gerrard JA (2014) Peroxiredoxin is a versatile self-assembling tecton for protein nanotechnology. Biomacromolecules 15(5):1871–1881. doi:10.1021/bm500261u

    Article  CAS  PubMed  Google Scholar 

  • Radjainia M, Venugopal H, Desfosses A, Phillips AJ, Yewdall NA, Hampton MB, Gerrard JA, Mitra AK (2015) Cryo-electron microscopy structure of human peroxiredoxin-3 filament reveals the assembly of a putative chaperone. Structure 23(5):912–920. doi:10.1016/j.str.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  • Rand JD, Grant CM (2006) The thioredoxin system protects ribosomes against stress-induced aggregation. Mol Biol Cell 17(1):387–401. doi:10.1091/mbc.E05-06-0520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19(12):4120–4130. doi:10.1105/tpc.107.055061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccoccia F, Di Micco P, Boumis G, Brunori M, Koutris I, Miele AE, Morea V, Sriratana P, Williams DL, Bellelli A, Angelucci F (2012) Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin. Structure 20(3):429–439. doi:10.1016/j.str.2012.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarma GN, Nickel C, Rahlfs S, Fischer M, Becker K, Karplus PA (2005) Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. J Mol Biol 346(4):1021–1034. doi:10.1016/j.jmb.2004.12.022

    Article  CAS  PubMed  Google Scholar 

  • Schroder E, Ponting CP (1998) Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily. Protein Sci 7(11):2465–2468. doi:10.1002/pro.5560071125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroder E, Littlechild JA, Lebedev AA, Errington N, Vagin AA, Isupov MN (2000) Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution. Structure 8(6):605–615

    Article  CAS  PubMed  Google Scholar 

  • Seo JH, Lim JC, Lee DY, Kim KS, Piszczek G, Nam HW, Kim YS, Ahn T, Yun CH, Kim K, Chock PB, Chae HZ (2009) Novel protective mechanism against irreversible hyperoxidation of peroxiredoxin: Nalpha-terminal acetylation of human peroxiredoxin II. J Biol Chem 284(20):13455–13465. doi:10.1074/jbc.M900641200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeulders MJ, Barends TR, Pol A, Scherer A, Zandvoort MH, Udvarhelyi A, Khadem AF, Menzel A, Hermans J, Shoeman RL, Wessels HJ, van den Heuvel LP, Russ L, Schlichting I, Jetten MS, Op den Camp HJ (2011) Evolution of a new enzyme for carbon disulphide conversion by an acidothermophilic archaeon. Nature 478(7369):412–416. doi:10.1038/nature10464

    Article  CAS  PubMed  Google Scholar 

  • Sobotta MC, Liou W, Stocker S, Talwar D, Oehler M, Ruppert T, Scharf AN, Dick TP (2015) Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol 11(1):64–70. doi:10.1038/nchembio.1695

    Article  CAS  PubMed  Google Scholar 

  • Stresing V, Baltziskueta E, Rubio N, Blanco J, Arriba MC, Valls J, Janier M, Clezardin P, Sanz-Pamplona R, Nieva C, Marro M, Petrov D, Sierra A (2013) Peroxiredoxin 2 specifically regulates the oxidative and metabolic stress response of human metastatic breast cancer cells in lungs. Oncogene 32(6):724–735. doi:10.1038/onc.2012.93

    Article  CAS  PubMed  Google Scholar 

  • Tavender TJ, Sheppard AM, Bulleid NJ (2008) Peroxiredoxin IV is an endoplasmic reticulum-localized enzyme forming oligomeric complexes in human cells. Biochem J 411(1):191–199. doi:10.1042/BJ20071428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira F, Castro H, Cruz T, Tse E, Koldewey P, Southworth DR, Tomas AM, Jakob U (2015) Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum. Proc Natl Acad Sci U S A 112(7):E616–E624. doi:10.1073/pnas.1419682112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Eldijk MB, van Leeuwen I, Mikhailov VA, Neijenhuis L, Harhangi HR, van Hest JC, Jetten MS, Op den Camp HJ, Robinson CV, Mecinovic J (2013) Evidence that the catenane form of CS2 hydrolase is not an artefact. Chem Commun 49(71):7770–7772. doi:10.1039/c3cc43219j

    Article  Google Scholar 

  • Wagner E, Luche S, Penna L, Chevallet M, Van Dorsselaer A, Leize-Wagner E, Rabilloud T (2002) A method for detection of overoxidation of cysteines: peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress. Biochem J 366(Pt 3):777–785. doi:10.1042/BJ20020525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang L, Wang X, Sun F, Wang CC (2012) Structural insights into the peroxidase activity and inactivation of human peroxiredoxin 4. Biochem J 441(1):113–118. doi:10.1042/BJ20110380

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4(5):278–286. doi:nchembio.85 [pii], 10.1038/nchembio.85

  • Woo HA, Kang SW, Kim HK, Yang KS, Chae HZ, Rhee SG (2003) Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J Biol Chem 278(48):47361–47364. doi:10.1074/jbc.C300428200

    Article  CAS  PubMed  Google Scholar 

  • Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG (2010) Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140(4):517–528. doi:10.1016/j.cell.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2003a) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300(5619):650–653. doi:10.1126/science.1080405

    Article  CAS  PubMed  Google Scholar 

  • Wood ZA, Schroder E, Robin Harris J, Poole LB (2003b) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Yang KS, Kang SW, Woo HA, Hwang SC, Chae HZ, Kim K, Rhee SG (2002) Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J Biol Chem 277(41):38029–38036. doi:10.1074/jbc.M206626200

    Article  CAS  PubMed  Google Scholar 

  • Yewdall NA, Venugopal H, Desfosses A, Abrishami V, Yosaatmadja Y, Hampton MB, Gerrard JA, Goldstone DC, Mitra AK, Radjainia M (2016) Structures of human peroxiredoxin 3 suggest self-chaperoning assembly that maintains catalytic state. Structure. doi:10.1016/j.str.2016.04.013

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Gordon Lindsay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cao, Z., Lindsay, J.G. (2017). The Peroxiredoxin Family: An Unfolding Story. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes. Subcellular Biochemistry, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-46503-6_5

Download citation

Publish with us

Policies and ethics