Skip to main content

Exploring Data Mining Techniques in Medical Data Streams

  • Conference paper
  • First Online:
Databases Theory and Applications (ADC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9877))

Included in the following conference series:

Abstract

Data stream mining has been studied in diverse application domains. In recent years, a population aging is stressing the national and international health care systems. Anomaly detection is a typical example of a data streams application. It is a dynamic process of finding abnormal behaviours from given data streams. In this paper, we discuss the existing anomaly detection techniques for Medical data streams. In addition, we present a process of using the Autoregressive Integrated Moving Average model (ARIMA) to analyse the ECG data streams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brauckhoff, D., Salamatian, K., May, M.: A signal processing view on packet sampling and anomaly detection. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9, March 2010

    Google Scholar 

  2. Budalakoti, S., Budalakoti, S., Srivastava, A., Otey, M., Otey, M.: Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 39(1), 101–113 (2009)

    Article  Google Scholar 

  3. Buja, A., Hastie, T., Tibshirani, R.: Linear smoothers and additive models. Ann. Stat. 17, 453–510 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection for discrete sequences: a survey. IEEE Trans. Knowl. Data Eng. 24(5), 823–839 (2012)

    Article  Google Scholar 

  5. Chandola, V., Mithal, V., Kumar, V.: Comparative evaluation of anomaly detection techniques for sequence data. In: IEEE International Conference on Data Mining, pp. 743–748 (2008)

    Google Scholar 

  6. Council, C.S.C.: Impact of cloud computing on healthcare. Technical report, Cloud Standards Customer Council, November 2012

    Google Scholar 

  7. Das, S., Matthews, B.L., Srivastava, A.N., Oza, N.C.: Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 47–56. ACM (2010)

    Google Scholar 

  8. Dasgupta, D., Majumdar, N.: Anomaly detection in multidimensional data using negative selection algorithm. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 2, pp. 1039–1044 (2002)

    Google Scholar 

  9. Dasgupta, D., Nino, F.: A comparison of negative and positive selection algorithms in novel pattern detection. In: 2000 IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 125–130 (2000)

    Google Scholar 

  10. Durairaj, M., Ranjani, V.: Data mining applications in healthcare sector a study. Int. J. Sci. Technol. Res. 2(10) (2013)

    Google Scholar 

  11. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix processes. In: Proceedings of the 1996 IEEE Symposium on Security and Privacy, SP 1996, p. 120 (1996). http://dl.acm.org/citation.cfm?id=525080.884258

  12. Gao, B., Ma, H.Y., Yang, Y.H.: Hmms (hidden markov models) based on anomaly intrusion detection method. In: Proceedings of the 2002 International Conference on Machine Learning and Cybernetics, vol. 1, pp. 381–385 (2002)

    Google Scholar 

  13. Ghosh, A.K., Schwartzbard, A., Schatz, M.: Learning program behavior profiles for intrusion detection. In: Proceedings of the 1st Conference on Workshop on Intrusion Detection and Network Monitoring, ID’99, vol. 1, p. 6. USENIX Association, Berkeley (1999). http://dl.acm.org/citation.cfm?id=1267880.1267886

  14. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  15. Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971)

    Article  Google Scholar 

  16. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls. J. Comput. Secur. 6(3), 151–180. http://dl.acm.org/citation.cfm?id=1298081.1298084

    Google Scholar 

  17. Jacoby, W.G.: Loess: a nonparametric, graphical tool for depicting relationships between variables. Electoral. Stud. 19(4), 577–613 (2000)

    Article  Google Scholar 

  18. Khalid, S.: Activity classification and anomaly detection using m-mediods based modelling of motion patterns. Pattern Recogn. 43(10), 3636–3647 (2010). http://www.sciencedirect.com/science/article/pii/S0031320310002074

    Google Scholar 

  19. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2), 107–144 (2007). http://dx.doi.org/10.1007/s10618-007-0064-z

    Google Scholar 

  20. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data 6(1), 3:1–3:39. http://doi.acm.org/10.1145/2133360.2133363

    Google Scholar 

  21. Liu, W., Hua, G., Smith, J.: Unsupervised one-class learning for automatic outlier removal. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3826–3833, June 2014

    Google Scholar 

  22. Masud, M., Gao, J., Khan, L., Han, J., Thuraisingham, B.: Classification and novel class detection in concept-drifting data streams under time constraints. IEEE Trans. Knowl. Data Eng. 23(6), 859–874 (2011)

    Article  Google Scholar 

  23. Pavlov, D.: Sequence modeling with mixtures of conditional maximum entropy distributions. In: Third IEEE International Conference on Data Mining, ICDM 2003, pp. 251–258, November 2003

    Google Scholar 

  24. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD 2000, pp. 427–438. ACM, New York (2000). http://doi.acm.org/10.1145/342009.335437

    Google Scholar 

  25. Silveira, F., Diot, C., Taft, N., Govindan, R.: Astute: Detecting a different class of traffic anomalies. In: Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM 2010, pp. 267–278. ACM, New York (2010). http://doi.acm.org/10.1145/1851182.1851215

  26. Tan, S.C., Ting, K.M., Liu, T.F.: Fast anomaly detection for streaming data. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, vol. 2, pp. 1511–1516. AAAI Press (2011). http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-254

  27. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls: alternative data models. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp. 133–145 (1999)

    Google Scholar 

  28. Wei, W.W.S.: Time series analysis. Addison-Wesley publ. Reading (1994)

    Google Scholar 

  29. Yang, J., Wang, W.: Cluseq: efficient and effective sequence clustering. In: Proceedings. 19th International Conference on Data Engineering, 2003, pp. 101–112, March 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Sun, L., Ma, J., Zhang, Y., Wang, H. (2016). Exploring Data Mining Techniques in Medical Data Streams. In: Cheema, M., Zhang, W., Chang, L. (eds) Databases Theory and Applications. ADC 2016. Lecture Notes in Computer Science(), vol 9877. Springer, Cham. https://doi.org/10.1007/978-3-319-46922-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46922-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46921-8

  • Online ISBN: 978-3-319-46922-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics