Skip to main content

Anthropogenic Aerosol Emissions and Rainfall Decline in South-West Australia

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ´16

Abstract

It is commonly understood that the observed decline in precipitation in South-West Australia during the twentieth century is caused by anthropogenic factors. In our project wa-aero on ForHLR1, we focus on the role of rapidly rising aerosol emissions from anthropogenic sources in South-West Australia around 1970. An analysis of historical longterm rainfall data of the Bureau of Meteorology shows that South-West Australia as a whole experienced a gradual decline in precipitation over the twentieth century. However, on smaller scales and for the particular example of the Perth catchment area, a sudden drop in precipitation around 1970 is apparent. Modelling experiments at a convection-resolving resolution of 3.3 km using the Weather and Research Forecasting (WRF) model version 3.6.1 with the aerosol-aware Thompson-Eidhammer microphysics scheme are conducted for the period 1970–1974. A comparison of four runs with different prescribed aerosol emissions and without aerosol effects demonstrates that tripling the pre-1960s atmospheric CCN and IN concentrations, as suggested by air-borne measurements, can suppress precipitation by 2–9 %, depending on the area and the season. An extended version of the results presented here was accepted for publication in the Journal of Climate in June 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Allan, R., Ansell, T.: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Clim. 19, 5816–5842 (2006)

    Article  Google Scholar 

  2. Andreae, M.O.: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos. Chem. Phys. Discus. 8 (3), 11293–11320 (2008)

    MathSciNet  Google Scholar 

  3. Andrich, M.A., Imberger, J.: The effect of land clearing on rainfall and fresh water resources in Western Australia: a multi-functional sustainability analysis. Int. J. Sustain. Dev. World Ecol. 20 (6), 549–563 (2013)

    Article  Google Scholar 

  4. Bates, B.C., Hope, P., Ryan, B., Smith, I., Charles, S.: Key findings from the Indian Ocean climate initiative and their impact on policy development in Australia. Clim. Change 89 (3–4), 339–354 (2008)

    Article  Google Scholar 

  5. Bigg, E., Soubeyrand, S., Morris, C.: Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause. Atmos. Chem. Phys. 15, 2313–2326 (2015)

    Article  Google Scholar 

  6. Bigg, E., Turvey, D.: Sources of atmospheric particles over Australia. Atmos. Environ. 12 (8), 1643–1655 (1978)

    Article  Google Scholar 

  7. Bigg, E.K.: Ice nucleus concentrations in remote areas. J. Atmos. Sci. 30 (6), 1153–1157 (1973)

    Article  Google Scholar 

  8. Bradshaw, C.J.A.: Little left to lose: deforestation and forest degradation in Australia since European colonization. J. Plant Ecol. 5 (1), 109–120 (2012)

    Article  Google Scholar 

  9. Bureau of Meteorology: Daily rainfall climate data: product code IDCJAC0009 (2015)

    Google Scholar 

  10. Delworth, T.L., Rosati, A., Anderson, W., Adcroft, A.J., Balaji, V., Benson, R., Dixon, K., Griffies, S.M., Lee, H.C., Pacanowski, R.C., Vecchi, G.A., Wittenberg, A.T., Zeng, F., Zhang, R.: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Clim. 25 (8), 2755–2781 (2012)

    Google Scholar 

  11. Delworth, T.L., Zeng, F.: Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci. 7, 583–587 (2014)

    Article  Google Scholar 

  12. Fersch, B., Kunstmann, H.: Atmospheric and terrestrial water budgets: sensitivity and performance of configurations and global driving data for long term continental scale WRF simulations. Clim. Dyn. 42 (9–10), 2367–2396 (2013)

    Google Scholar 

  13. Gallagher, M.W., Nemitz, E., Dorsey, J.R., Fowler, D., Sutton, M.A., Flynn, M., Duyzer, J.H.: Measurements and parameterizations of small aerosol deposition velocities to grassland, arable crops, and forest: influence of surface roughness length on deposition. J. Geophys. Res. Atmos. 107, AAC 8-1–AAC 8-10 (2002)

    Google Scholar 

  14. Grabowski, W.W., Morrison, H.: Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi equilibrium. Part II: Double-moment microphysics. J. Clim. 24 (7), 1897–1912 (2011)

    Google Scholar 

  15. Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H.: Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014)

    Google Scholar 

  16. Junkermann, W., Hacker, J.M.: Ultrafine particles over Eastern Australia: an airborne survey. Tellus B 67, 25308 (2015)

    Article  Google Scholar 

  17. Junkermann, W., Hacker, J.M., Lyons, T., Nair, U.: Land use change suppresses precipitation. Atmos. Chem. Phys. Discus. 9 (3), 11481–11500 (2009)

    Google Scholar 

  18. Kala, J., Lyons, T., Nair, U.: Numerical simulations of the impacts of land-cover change on cold fronts in south-west Western Australia. Boun. Layer Meteorol. 138, 121–138 (2010)

    Article  Google Scholar 

  19. Kamilli, K.A., Ofner, J., Lendl, B., Schmitt-Kopplin, P., Held, A.: New particle formation above a simulated salt lake in aerosol chamber experiments. Environ. Chem. 12 (4), 489–503 (2015)

    Article  Google Scholar 

  20. Karoly, D.J.: Climate change: human-induced rainfall changes. Nat. Geosci. 7 (8), 551–552 (2014)

    Article  Google Scholar 

  21. Lee, S.S., Feingold, G.: Aerosol effects on the cloud-field properties of tropical convective clouds. Atmos. Chem. Phys. 13 (14), 6713–6726 (2013)

    Article  Google Scholar 

  22. Miguez-Macho, G., Stenchikov, G.L., Robock, A.: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res. D Atmos. 109, D13104 (2004)

    Article  Google Scholar 

  23. Prein, A.F., Gobiet, A., Suklitsch, M., Truhetz, H., Awan, N.K., Keuler, K., Georgievski, G.: Added value of convection permitting seasonal simulations. Clim. Dyn. 41 (9–10), 2655–2677 (2013)

    Article  Google Scholar 

  24. Ruprecht, J., Schofield, N.: Effects of partial deforestation on hydrology and salinity in high salt storage landscapes. II. Strip, soils and parkland clearing. J. Hydrol. 129 (1–4), 39–55 (1991)

    Google Scholar 

  25. Saunders, D.: Changes in the Avifauna of a region, district and remnant as a result of fragmentation of native vegetation: the wheatbelt of western Australia. A case study. Biol. Conserv. 50 (1–4), 99–135 (1989)

    Article  Google Scholar 

  26. Seifert, A., Köhler, C., Beheng, K.D.: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos. Chem. Phys. 12 (2), 709–725 (2012)

    Article  Google Scholar 

  27. Skamarock, W., Klemp, J., Dudhi, J., Gill, D., Barker, D., Duda, M., Huang, X.-Y., Wang, W., Powers, J.: A description of the advanced research WRF version 3, NCAR/TN-475+STR. Technical report (2008)

    Google Scholar 

  28. Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., Zhang, C.: Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 50, RG2001 (2012). doi:10.1029/2011RG000369

    Article  Google Scholar 

  29. Thompson, G., Eidhammer, T.: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci. 71, 3636–3658 (2014)

    Article  Google Scholar 

  30. Uppala, S., Kållberg, P.W., Simmons, A.J., Andrae, U., Bechtold, V.D.C., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., Berg, L.V.D., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., Mcnally, A.P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterbo, P., Woollen, J.: The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005)

    Google Scholar 

  31. van den Heever, S.C., Stephens, G.L., Wood, N.B.: Aerosol indirect effects on tropical convection characteristics under conditions of radiative-convective equilibrium. J. Atmos. Sci. 68 (4), 699–718 (2011)

    Article  Google Scholar 

  32. von Storch, H., Langenberg, H., Feser, F.: A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev. 128, 3664–3673 (2000)

    Article  Google Scholar 

  33. Weisman, M.L., Skamarock, W.C., Klemp, J.B.: The resolution dependence of explicitly modeled convective systems. Mon. Weather Rev. 125 (4), 527–548 (1997)

    Article  Google Scholar 

  34. Willmott, C.J., Matsuura, K.: University of Delaware Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999) v3.01. http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html (2014). Accessed 6 Nov 2016

Download references

Acknowledgements

The modelling experiments presented here required more than 2 Mio CPUh and were conducted on the Karlsruhe Institute of Technology Steinbruch Centre for Computing (KIT-SCC) ForHLR1 supercomputer. The authors acknowledge the European Centre for Medium-Range Weather Forecasts (ECMWF) for the dissemination of ERA40, the NOAA/OAR/ ESRL PSD, Boulder for providing the UDEL air temperature and precipitation data and the HadSLP2 sea level pressure data, the University of East Anglia, Climate Research Unit, for access to the CRU air temperature and precipitation data, and the Bureau of Meteorology, Australia, for the dissemination of the daily rainfall climate data. The authors are particularly grateful for the support of Greg Thompson (NCAR) in the design of the experiment and the setup of the WRF model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominikus Heinzeller .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 2 WRF model configuration for the different domains at 30 km, 10 km and 3.33 km resolution and for the different types of high-resolution runs

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Heinzeller, D., Junkermann, W., Kunstmann, H. (2016). Anthropogenic Aerosol Emissions and Rainfall Decline in South-West Australia. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_38

Download citation

Publish with us

Policies and ethics