Skip to main content

Management of Ionization Source Based on a Pulsed Corona Discharge

  • Conference paper
  • First Online:
Internet of Things. IoT Infrastructures (IoT360 2015)

Abstract

It is developed igniting electrical circuit for pulsed corona discharge ionization to operate a source as part of an ion mobility spectrometer. The simulation circuit for forming a corona discharge allowed optimizing the parameters. The possibility of electronic switching of the primary winding and reverse polarity diodes in the high voltage part of the circuit provide operation of the corona discharge ion source for detection both positive and negative ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eiceman, G.A., Karpas, Z.: Ion Mobility Spectrometry, 2nd edn. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  2. Hill Jr., H.H., Siems, W.F., St. Louis, R.H., McMinn, D.G.: Ion mobility spectrometry. Anal. Chem. 62(23), 1201A–1209A (1990)

    Article  Google Scholar 

  3. Borsdorf, H., Eiceman, G.A.: Ion mobility spectrometry: principles and applications. Appl. Spectro. Rev. 41(4), 323–375 (2006). doi:10.1080/05704920600663469

    Article  Google Scholar 

  4. Samotaev, N., Golovin, A., Vasilyev, V., Malkin, E., Gromov, E., Shaltaeva, Y., Mironov, A., Lipatov, D.: IMS development at NRNU MEPhI. In: Natale, C., Ferrari, V., Ponzoni, A., Sberveglieri, G., Ferrari, M. (eds.) Sensors and Microsystems. Lecture Notes in Electrical Engineering, vol. 268, pp. 447–451. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  5. Chua, B., Pak, J.J.: Miniaturized corona flow sensor operating in drift mobility increment mode for low flow velocity measurement. Sens. Actuators, A: Physical 224, 65–71 (2015). doi:10.1016/j.sna.2015.01.022

    Article  Google Scholar 

  6. Bottoni, P., Caroli, S.: Detection and quantification of residues and metabolites of medicinal products in environmental compartments, food commodities and workplaces. A review. J. Pharm. Biomed. Anal. 106, 3–24 (2015)

    Article  Google Scholar 

  7. Li, F., Xie, Z.-Y., Schmidt, H., Seiemann, S., Baumbach, J.I.: Ion mobility spectrometer (IMS): a novel online monitor of trace volatile organic compounds. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spectral Anal. 22(6), 1027–1029 (2002)

    Google Scholar 

  8. Johnson, P.V., Beegle, L.W., Kim, H.I., Eiceman, G.A., Kanik, I.: Ion mobility spectrometry in space exploration. Int. J. Mass Spectrom. 262(1–2), 1–15 (2007)

    Article  Google Scholar 

  9. Goldman, M., Goldman, A., Sigmond, R.S.: Corona discharge, its properties and specific uses. Pure Appl. Chem. 57(9), 1353–1362 (1985)

    Article  Google Scholar 

  10. Hill, C.A., Thomas, C.L.: A pulsed corona discharge switchable high resolution ion mobility spectrometer-mass spectrometer. Analyst 128(1), 55–60 (2003). doi:10.1039/b207558j

    Article  Google Scholar 

  11. Tabrizchi, M., Khayamian, T., Taj, N.: Design and optimization of a corona discharge ionization source for ion mobility spectrometry. Rev. Sci. Instrum. 71(6), 2321–2328 (2000)

    Article  Google Scholar 

  12. Matsaev, V., Gumerov, M., Krasnobaev, L., Pershenkov, V., Belyakov, V., Chistyakov, A., Boudovitch, V.: IMS Spectrometers with radioactive, X-ray, UV and laser ionization. Int. J. Ion Mobility Spectrom. 5(3), 112–114 (2002)

    Google Scholar 

  13. Chen, J., Davidson, J.H.: Ozone production in the positive DC corona discharge: model and comparison to experiments. Plasma Chem. Plasma Process. 22(4), 495–522 (2002). doi:10.1023/A:1021315412208

    Article  Google Scholar 

  14. Laakia, J., Pederson, C.S., Adamov, A., Viidanoja, J., Sysoev, A., Kotiaho, T.: Sterically hindered phenols in negative ion mobility spectrometry-mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3069–3076 (2009). doi:10.1002/rcm.4223

    Article  Google Scholar 

  15. Adamov, A., Mauriala, T., Teplov, V., Laakia, J., Pederson, C.S., Kotiaho, T., Sysoev, A.A.: Characterization of a high resolution drift tube ion mobility spectrometer with a multi-ion source platform. Int. J. Mass Spectrom. 298, 24–29 (2010). doi:10.1016/j.ijms.2010.02.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Samotaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Belyakov, V. et al. (2016). Management of Ionization Source Based on a Pulsed Corona Discharge. In: Mandler, B., et al. Internet of Things. IoT Infrastructures. IoT360 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-47075-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47075-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47074-0

  • Online ISBN: 978-3-319-47075-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics