Skip to main content

Incorporating Transparency During Trust-Guided Behavior Adaptation

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9969))

Included in the following conference series:

Abstract

An important consideration in human-robot teams is ensuring that the robot is trusted by its teammates. Without adequate trust, the robot may be underutilized or disused, potentially exposing human teammates to dangerous situations. We have previously investigated an agent that can assess its own trustworthiness and adapt its behavior accordingly. In this paper we extend our work by adding a transparency layer that allows the agent to explain why it adapted its behavior. The agent uses explanations based on explicit feedback received from an operator. This allows it to provide simple, concise, and understandable explanations. We evaluate our system on scenarios from a simulated robotics domain by demonstrating that the agent can provide explanations that closely align with an operator’s feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the remainder of this paper, we use the term robot to refer to a physical (or simulated) robot and agent to refer to the intelligent agent controlling the robot.

  2. 2.

    The case base described in [1] labelled Patrol Random. It contains cases learned from both the speed-focused and detection-focused operators (25 total cases).

  3. 3.

    The learned feedback base is identical to the feedback base described in [2] where feedback is given by the operator 100 % of the time. It contains feedback from both operators.

References

  1. Floyd, M.W., Drinkwater, M., Aha, D.W.: How much do you trust me? Learning a case-based model of inverse trust. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 125-139. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11209-1_10

    Google Scholar 

  2. Floyd, M.W., Drinkwater, M., Aha, D.W.: Improving trust-guided behavior adaptation using operator feedback. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS, vol. 9343, pp. 134-148. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24586-7_10

    Chapter  Google Scholar 

  3. Dzindolet, M.T., Peterson, S.A., Pomranky, R.A., Pierce, L.G., Beck, H.P.: The role of trust in automation reliance. Int. J. Hum Comput Stud. 58(6), 697-718 (2003)

    Article  Google Scholar 

  4. Sabater, J., Sierra, C.: Review on computational trust and reputation models. Artif. Intell. Rev. 24(1), 33-60 (2005)

    Article  MATH  Google Scholar 

  5. Hancock, P.A., Billings, D.R., Schaefer, K.E., Chen, J.Y., De Visser, E.J., Parasuraman, R.: A meta-analysis of factors affecting trust in human-robot interaction. Hum. Factors J. Hum. Factors Ergon. Soc. 53(5), 517-527 (2011)

    Article  Google Scholar 

  6. Kaniarasu, P., Steinfeld, A., Desai, M., Yanco, H.A.: Potential measures for detecting trust changes. In: Proceedings of the Seventh International Conference on Human-Robot Interaction, pp. 241-242. ACM, Boston (2012)

    Google Scholar 

  7. Knexus Research Corporation: eBotworks (2016). Retrieved from http://www.knexusresearch.com/products/ebotworks.php

  8. Chen, J.Y.C., Barnes, M.J., Selkowitz, A.R., Stowers, K., Lakhmani, S.G., Kasdaglis, N.: Human-autonomy teaming and agent transparency. In: Proceedings of the Twenty-First International Conference on Intelligent User Interfaces, pp. 28-31. ACM, Sonoma (2016)

    Google Scholar 

  9. Aamodt, A.: Explanation-driven case-based reasoning. In: Wess, S., Richter, M., Althoff, K.-D. (eds.) EWCBR 1993. LNCS, vol. 837, pp. 274-288. Springer, Heidelberg (1994). doi:10.1007/3-540-58330-0_93

    Chapter  Google Scholar 

  10. Molineaux, M., Kuter, U., Klenk, M.: Discover history: understanding the past in planning and execution. In: Proceedings of the Eleventh International Conference on Autonomous Agents and Multi-agent Systems, pp. 989-996. IFAAMAS, Valencia (2012)

    Google Scholar 

  11. Leake, D.B.: CBR in context: the present and future. In: Leake, D.B. (ed.) Case-Based Reasoning: Experiences, Lessons, and Future Directions. AAAI Press/MIT Press, Menlo Park (1996)

    Google Scholar 

  12. Cunningham, P., Doyle, D., Loughrey, J.: An evaluation of the usefulness of case-based explanation. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 122-130. Springer, Heidelberg (2003). doi:10.1007/3-540-45006-8_12

    Chapter  Google Scholar 

  13. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning-perspectives and goals. Artif. Intell. Rev. 24(2), 109-143 (2005)

    Article  MATH  Google Scholar 

  14. Roth-Berghofer, T.R.: Explanations and case-based reasoning: foundational issues. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 389-403. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28631-8_29

    Chapter  Google Scholar 

  15. Kofod-Petersen, A., Cassens, J.: Explanations and context in ambient intelligent systems. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 303-316. Springer, Heidelberg (2007). doi:10.1007/978-3-540-28631-8_29

    Chapter  Google Scholar 

  16. Brüninghaus, S., Ashley, K.D.: Combining case-based and model-based reasoning for predicting the outcome of legal cases. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 65-79. Springer, Heidelberg (2003). doi:10.1007/3-540-45006-8_8

    Chapter  Google Scholar 

  17. Massie, S., Craw, S., Wiratunga, N.: Visualisation of case-case reasoning for explanation. In: Proceedings of the Seventh European Conference on Case-Based Reasoning Workshops, pp. 135-144. Madrid, Spain (2004)

    Google Scholar 

  18. Tintarev, N., Masthoff, J.: A survey of explanations in recommender systems. In: Proceedings of the Twenty-Third International Conference on Data Engineering Workshops, pp. 801-810. IEEE, Istanbul (2007)

    Google Scholar 

  19. McSherry, D.: Explanation in recommender systems. Artif. Intell. Rev. 24(2), 179-197 (2005)

    Article  MATH  Google Scholar 

  20. Muhammad, K., Lawlor, A., Rafter, R., Smyth, B.: Great explanations: opinionated explanations for recommendations. In: Muhammad, K., Lawlor, A., Rafter, R., Smyth, B. (eds.) ICCBR 2015. LNCS, vol. 9343, pp. 244-258. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24586-7_17

    Chapter  Google Scholar 

  21. Tavakolifard, M., Herrmann, P., Öztürk, P.: Analogical trust reasoning. In: Ferrari, E., Li, N., Bertino, E., Karabulut, Y. (eds.) IFIPTM 2009. IFIP AICT, vol. 300, pp. 149-163. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02056-8_10

    Chapter  Google Scholar 

  22. Briggs, P., Smyth, B.: Provenance, trust, and sharing in peer-to-peer case-based web search. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp. 89-103. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85502-6_6

    Chapter  Google Scholar 

  23. Leake, D.B., Whitehead, M.: Case provenance: The value of remembering case sources. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS, vol. 4626, pp. 194-208. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74141-1_14

    Chapter  Google Scholar 

  24. Kaniarasu, P., Steinfeld, A., Desai, M., Yanco, H.A.: Robot confidence and trust alignment. In: Proceedings of the Eighth International Conference on Human-Robot Interaction, pp. 155-156. ACM, Tokyo (2013)

    Google Scholar 

  25. Saleh, J.A., Karray, F., Morckos, M.: Modelling of robot attention demand in human-robot interaction using finite fuzzy state automata. In: Proceedings of the International Conference on Fuzzy Systems, pp. 1-8. IEEE, Brisbane (2012)

    Google Scholar 

Download references

Acknowledgements

Thanks to ONR for sponsoring this research. Thanks also to Michael Drinkwater for his assistance in developing the eBotworks scenarios we used to evaluate our agent, and to the reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Floyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Floyd, M.W., Aha, D.W. (2016). Incorporating Transparency During Trust-Guided Behavior Adaptation. In: Goel, A., Díaz-Agudo, M., Roth-Berghofer, T. (eds) Case-Based Reasoning Research and Development. ICCBR 2016. Lecture Notes in Computer Science(), vol 9969. Springer, Cham. https://doi.org/10.1007/978-3-319-47096-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47096-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47095-5

  • Online ISBN: 978-3-319-47096-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics