Skip to main content

Phase Change Solvents for CO2 Capture Applications

  • Chapter
  • First Online:
Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Solvent systems that separate into two phases upon absorption of CO2, one rich and one lean in CO2, have significant potential to exhibit reduced energy requirements. This reduction stems primarily from the ability to separate the two phases such that only the stream containing CO2 is heated in the regenerator resulting in reduced sensible and latent heating requirements. Thus, this class of solvents are currently under intense investigation in universities and industries globally. This chapter presents recent developments in Solid-Liquid and Liquid-Liquid phase change solvents for CO2 capture, including laboratory, pilot scale and commercial system installations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Amine (in Fig. 2)

AAS:

Amino acid salt

ABS:

Absorber

AMP:

2-Amino-2-methyl-1-propanol

COND:

Condenser

DEA:

Diethanolamine

DEEA:

2-(diethylamino)ethanol

DMCA:

Dimethylcyclohexylamine

DPA:

Dipropylamine

HEX:

Heat exchanger

HP CO2 :

High pressure carbon dioxide

Kn :

Equilibrium constant

LP CO2 :

Low pressure carbon dioxide

MAPA:

3-(methylamino)propylamine

MEA:

Monoethanolamine

NMP:

N-methyl-2-pyrrolidone

P:

Pump

REB:

Reboiler

SEP:

Separator

TBS:

Thermomorphic biphasic solvent

TEGDME:

Triethylene glycol dimethyl ether

TEPA:

Tetraethylenepentamine

TETA:

Triethylenetetramine

References

  1. Alstom (2007) Chilled ammonia-based wet scrubbing for post-combustion CO2 capture. In: 401/021507 DNRN (ed)

    Google Scholar 

  2. Anderson C, Harkin T, Ho M et al (2013) Developments in the CO2CRC UNO MK 3 process: a multi-component solvent process for large scale CO2 Capture. In: Dixon T, Yamaji K (eds) Ghgt-11. Elsevier Science, Amsterdam, pp 225–232

    Google Scholar 

  3. Arshad MW, Fosbøl PL, Von Solms N et al (2013) Freezing point depressions of phase change CO2 solvents. J Chem Eng Data 58:1918–1926

    Article  Google Scholar 

  4. Arshad MW, Von Solms N, Thomsen K et al (2013) Heat of absorption of CO2 in aqueous solutions of DEEA, MAPA and their mixture. Energy Procedia, 1532–1542

    Google Scholar 

  5. Barzagli F, Mani F, Peruzzini M (2013) Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP). Int J Greenh Gas Control 16:217–223

    Article  Google Scholar 

  6. Cullinane JT, Rochelle GT (2004) Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine. Chem Eng Sci 59:3619–3630

    Article  Google Scholar 

  7. Fernandes D, Conway W, Burns R et al (2012) Investigations of primary and secondary amine carbamate stability by H-1 NMR spectroscopy for post combustion capture of carbon dioxide. J Chem Thermodyn 54:183–191

    Article  Google Scholar 

  8. Fernandez ES, Goetheer ELV (2011) DECAB: process development of a phase change absorption process. 10th international conference on greenhouse gas control technologies. Vol 4, pp 868–875

    Google Scholar 

  9. Fernandez ES, Heffernan K, Van Der Ham LV et al (2013) Conceptual design of a novel CO2 capture process based on precipitating amino acid solvents. Ind Eng Chem Res 52:12223–12235

    Article  Google Scholar 

  10. Gal E (2008) ultra cleaning of combustion gas including the removal of Co2. In:Google Patents

    Google Scholar 

  11. Gal E, Jayaweera I (2010) Chilled ammonia based CO2 capture system with water wash system. In: Google Patents

    Google Scholar 

  12. Goetheer ELV, Nell L (2009) First pilot results from TNO’s solvent development workflow. Carbon Capture J 8:2–3

    Google Scholar 

  13. Hasib-Ur-Rahman M, Siaj M, Larachi F (2012) CO2 capture in alkanolamine/room-temperature ionic liquid emulsions: a viable approach with carbamate crystallization and curbed corrosion behavior. Int J Greenh Gas Control 6:246–252

    Article  Google Scholar 

  14. Hook RJ (1997) An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds. Ind Eng Chem Res 36:1779–1790

    Article  Google Scholar 

  15. Hooper B, Stevens G, Kentish S et al (2011) A process and plant for removing acid gases

    Google Scholar 

  16. Kumar PS, Hogendoorn JA, Feron PHM et al (2003) Equilibrium solubility of CO2 in aqueous potassium taurate solutions: part 1. crystallization in carbon dioxide loaded aqueous salt solutions of amino acids. Ind Eng Chem Res 42:2832–2840

    Article  Google Scholar 

  17. Lee A, Wolf M, Kromer N et al (2015) A study of the vapour-liquid equilibrium of CO2 in mixed solutions of potassium carbonate and potassium glycinate. Int J Greenh Gas Control 36:27–33

    Article  Google Scholar 

  18. Lombardo G, Agarwal R, Askander J (2014) Chilled ammonia process at technology center Mongstad—first results. Energy Procedia 51:31–39

    Article  Google Scholar 

  19. Majchrowicz ME, Brilman DWF (2012) Solubility of CO2 in aqueous potassium L-prolinate solutions-absorber conditions. Chem Eng Sci 72:35–44

    Article  Google Scholar 

  20. Majchrowicz ME, Brilman DWF, Groeneveld MJ (2009) Precipitation regime for selected amino acid salts for CO(2) capture from flue gases. Greenhouse Gas Control Technol 9(1):979–984

    Google Scholar 

  21. Misiak K, Sanchez CS, Van Os P et al (2013) Next generation post- combustion capture: combined CO2 and SO2 removal. Energy Procedia 37:1150–1159

    Article  Google Scholar 

  22. Moene R (2013) CCS—innovation in shell (innovation is bringing an insightful ideal successfully to the market). In: CLIMIT SUMMIT 2013. Oslo

    Google Scholar 

  23. Moene R, Schoon L, Van Straelen J et al (2013) Precipitating carbonate process for energy efficient post-combustion CO2 capture. Energy Procedia 37:1881–1887

    Article  Google Scholar 

  24. Moene R, Schoon L, Van Straelen J et al (2013) Precipitating carbonate process for energy efficient post-combustion CO2 capture. Ghgt-11 37:1881–1887

    Google Scholar 

  25. Monteiro JGMS, Pinto DDD, SaH Zaidy et al (2013) VLE data and modelling of aqueous N, N-diethylethanolamine (DEEA) solutions. Int J Greenhouse Gas Control 19:432–440

    Article  Google Scholar 

  26. Mosser M (2012) Post-combustion CO2 capture for existing PC boilers by self-concentrating amine absorbent. In: National Energy Technology Laboratory

    Google Scholar 

  27. National Energy Technology Laboratory (2013) DOE/NETL advance carbon dioxide capture R&D program: technology update. In: Department of Energy, p 716

    Google Scholar 

  28. Pennenergy (2014) Clean coal: carbon capture pilot begins at Polk IGCC plant

    Google Scholar 

  29. Pinto DDD, Knuutila H, Fytianos G et al (2014) CO2 post combustion capture with a phase change solvent. Pilot plant campaign. Int J Greenhouse Gas Control 31:153–164

    Article  Google Scholar 

  30. Raynal L, Bouillon PA, Gomez A et al (2011) From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture. Chem Eng J 171:742–752

    Article  Google Scholar 

  31. Sanchez-Fernandez E, De Miguel Mercader F, Misiak K et al (2013) New process concepts for CO2 capture based on precipitating amino acids. Energy Procedia

    Google Scholar 

  32. Smith K, Harkin T, Mumford K et al (2016) Outcomes from a precipitating potassium carbonate solvent absorption pilot plant for CO2 capture from a brown coal fired power station in Australia. Fuel Processing Technology. doi:10.1016/j.fuproc.2016.08.008

  33. Smith K, Lee A, Mumford K et al (2015) Pilot plant results for a precipitating potassium carbonate solvent absorption process promoted with glycine for enhanced CO2 capture. Fuel Process Technol 135:60–65

    Article  Google Scholar 

  34. Smith K, Xiao G, Mumford K et al (2013) Demonstration of a concentrated potassium carbonate process for CO2 capture. Energy Fuels 28:299–306

    Article  Google Scholar 

  35. Svendsen HF, Tobiesen FA, Mejdell T et al (2008) Method for capturing Co2 from exhaust gas. In: Google Patents

    Google Scholar 

  36. Svensson H, Hulteberg C, Karlsson HT (2014) Precipitation of AMP carbamate in CO2 absorption process. Energy Procedia 63:750–757

    Article  Google Scholar 

  37. Telikapalli V, Kozak F, Francois J et al (2011) CCS with the Alstom chilled ammonia process development program—field pilot results. 10th international conference on greenhouse gas control technologies 4:273–281

    Google Scholar 

  38. Thee H, Nicholas NJ, Smith K et al (2014) A kinetic study of CO2 capture with potassium carbonate solutions promoted with various amino acids: glycine, sarcosine and proline. Int J Greenh Gas Control 20:212–222

    Article  Google Scholar 

  39. Thee H, Suryaputradinata Y, Mumford KA et al (2012) A kinetic and process modeling study of CO2 capture with MEA-promoted potasium carbonate solutions. Chem Eng J 210

    Google Scholar 

  40. Van Straelen JPT (2011) Process for the removal of carbon dioxide from a gas. In: Google Patents

    Google Scholar 

  41. Van Straelen JPT (2015) Process for the removal of carbon dioxide from a gas. In: Google Patents

    Google Scholar 

  42. Versteeg GF, Kumar PS, Hogendoorn JA et al (2011) Method for absorption of acid gases. In: Google Patents

    Google Scholar 

  43. Xu Z, Wang S, Qi G et al (2014) CO2 absorption by biphasic solvents: comparison with lower phase alone. Oil Gas Sci Technol 69:851–864

    Article  Google Scholar 

  44. Zhang J, Nwani O, Tan Y et al (2011) Carbon dioxide absorption into biphasic amine solvent with solvent loss reduction. Chem Eng Res Des 89:1190–1196

    Article  Google Scholar 

  45. Zhang J, Qiao Y, Agar DW (2012) Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture. Energy Procedia 23:92–101

    Article  Google Scholar 

  46. Zheng SD, Tao MN, Liu Q et al (2014) Capturing CO2 into the precipitate of a phase-changing solvent after absorption. Environ Sci Technol 48:8905–8910

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn A. Mumford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mumford, K.A., Smith, K.H., Stevens, G.W. (2017). Phase Change Solvents for CO2 Capture Applications. In: Budzianowski, W. (eds) Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47262-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47262-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47261-4

  • Online ISBN: 978-3-319-47262-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics