Skip to main content

Malware Propagation Models in Wireless Sensor Networks: A Review

  • Conference paper
  • First Online:
International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 (SOCO 2016, CISIS 2016, ICEUTE 2016)

Abstract

Mathematical models to study to simulate the spread of malware are widely studied today. Malware spreading in Wireless Sensor Networks (WSNs) has special relevance as these networks consist on hundreds or even thousands of autonomous devices (sensors) able to monitor and to communicate with one another. Malware attacks on WSNs have become a critical challenge because sensors generally have weak defense capabilities, that is why the malware propagation in WSNs is relevant for security community. In this paper, some of the most important and recent global mathematical models to describe malware spreading in such networks are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  2. Anderson, R.M., May, R.M., Anderson, B.: Infectious Diseases of Humans: Dynamics and Control, vol. 28. Oxford University Press, Oxford (1992)

    Google Scholar 

  3. Chong, C.Y., Kumar, S.P.: Sensor networks: evolution, opportunities, and challenges. Proc. IEEE 91(8), 1247–1256 (2003)

    Article  Google Scholar 

  4. Conti, M.: Secure Wireless Sensor Networks: Threats and Solutions. Advances in Information Security, vol. 65. Springer, New York (2015)

    Book  Google Scholar 

  5. De, P., Liu, Y., Das, S.K.: Modeling node compromise spread in wireless sensor networks using epidemic theory. In: Proceedings of World Wireless Mobile Multimedia Networks, pp. 237–243 (2006)

    Google Scholar 

  6. De, P., Liu, Y., Das, S.K.: An epidemic theoretic framework for evaluating broadcast protocols in wireless sensor networks. In: Mobile Adhoc Sensor Systems, pp. 1–9 (2007)

    Google Scholar 

  7. De, P., Das, S.K.: Epidemic Models, Algorithms, and Protocols in Wireless Sensor and Ad Hoc Networks. Wiley, New York (2008)

    Book  Google Scholar 

  8. De, P., Liu, Y., Das, S.K.: An epidemic theoretic framework for vulnerability analysis of broadcast protocols in wireless sensor networks. IEEE. Trans. Mobile Comput. 8(3), 413–425 (2009)

    Article  Google Scholar 

  9. Fadel, E., Gungor, V.C., Nassef, L., Akkari, N., Malik, M.G.A., Almasri, S., Akyildiz, I.F.: A survey on wireless sensor networks for smart grid. Comput. Commun. 71, 22–33 (2015)

    Article  Google Scholar 

  10. Feng, L., Song, L., Zhao, Q., Wang, H.: Modeling and stability analysis of worm propagation in wireless sensor network. Math. Probl. Eng. 8 (2015). Article ID: 129598

    Google Scholar 

  11. Guo, W., Zhai, L., Guo, L., Shi, J.: Worm propagation control based on spatial correlation in wireless sensor network. In: Wang, H., Zou, L., Huang, G., He, J., Pang, C., Zhang, H.L., Zhao, D., Yi, Z. (eds.) APWeb 2012. LNCS, vol. 7234, pp. 68–77. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29426-6_10

    Chapter  Google Scholar 

  12. Hu, J., Song, Y.: The model of malware propagation in wireless sensor networks with regional detection mechanism. Commun. Comput. Inf. Sci. 501, 651–662 (2015)

    Google Scholar 

  13. Jorgensen, S.E., Fath, B.D.: Individual-based models. Dev. Env. Model. 23, 291–308 (2011)

    Google Scholar 

  14. Kechen, Z., Hong, Z., Kun, Z.C.: Simulation-based analysis of worm propagation in wireless sensor networks. In: IEEE Conference on Multimedia Information Networking and Security, pp. 847–851 (2012)

    Google Scholar 

  15. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics, part I. Proc. Roy. Soc. A. 115(772), 700–721 (1927)

    MATH  Google Scholar 

  16. Khayam, S.A., Radha, H.C.: A topologically-aware worm propagation model for wireless sensor networks. IEEE Conference on Distributed Computing Systems Workshops, pp. 210–216 (2005)

    Google Scholar 

  17. Khayam, S.A., Radha, H.: Using signal processing techniques to model worm propagation over wireless sensor networks. IEEE Sig. Process. Mag. 23(2), 164–169 (2006)

    Article  Google Scholar 

  18. Li, Q., Zhang, B., Cui, L., Fan, Z., Athanasios, V.V.: Epidemics on small worlds of tree-based wireless sensor networks. J. Syst. Sci. Complex. 27(6), 1095–1120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martín del Rey, A.: Mathematical modeling of the propagation of malware: a review. Secur. Commun. Netw. 8(15), 2561–2579 (2015)

    Article  Google Scholar 

  20. Mishra, B.K., Pandey, S.K.: Dynamic model of worms with vertical transmission in computer network. Appl. Math. Comput. 217(21), 8438–8446 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Mishra, B.K., Keshri, N.: Mathematical model on the transmission of worms in wireless sensor network. Appl. Math. Modell. 37, 4103–4111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E. 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  23. Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. Commun. ACM 47(6), 53–57 (2004)

    Article  Google Scholar 

  24. Railsback, S.F., Grimm, V.: Agent-Based and Individual-Based Modeling. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  25. Sen, J.: A survey on wireless sensor network security. Int. J. Commun. Netw. Inf. Secur. 1, 55–78 (2009)

    Google Scholar 

  26. Shen, S., Li, H., Han, R., et al.: Differential game-based strategies for preventing malware propagation in wireless sensor networks. IEEE Trans. Inf. Forensic Secur. 9(11), 1962–1973 (2014)

    Article  Google Scholar 

  27. Shengjun, W., Junhua, C.: Modeling the spread of worm epidemics in wireless sensor networks. In: 5th International Conference on Networking and Mobile Computing in Wireless Communications, pp. 1–4 (2009)

    Google Scholar 

  28. Tang, S.J.: A modified SI epidemic model for combating virus spread in wireless sensor networks. Int. J. Wireless Inf. Netw. 18(4), 319–326 (2011)

    Article  Google Scholar 

  29. Tang, S., Mark, B.L.: Analysis of virus spread in wireless sensor networks: an epidemic model. In: IEEE International Workshop on Design of Reliable Communication Networks, pp. 86–91 (2009)

    Google Scholar 

  30. Vasilakos, A.V.J.: Dynamics in small worlds of tree topologies of wireless sensor networks. J. Syst. Eng. Electr. 3, 001 (2012)

    Google Scholar 

  31. Wang, X., Li, Y.: An improved SIR model for analyzing the dynamics of worm propagation in wireless sensor networks. Chin. J. Electron. 18, 8–12 (2009)

    Google Scholar 

  32. Wang, X., Li, Q., Li, Y.: Eisirs: a formal model to analyze the dynamics of worm propagation in wireless sensor networks. J. Comb. Optim. 20, 47–62 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

  34. Wu, M., Tan, L., Xiong, N.: Data prediction, compression and recovery in clustered wireless sensor networks for environmental monitoring applications. Inf. Sci. 239, 800–818 (2016)

    Article  Google Scholar 

  35. Xiao-Ping, S., Yu-Rong, S.J.: A malware propagation model in wireless sensor networks with cluster structure of GAF. J. Telecommun. Sci. 27(8), 33–38 (2011)

    Google Scholar 

  36. Ya-Qi, W., Xiao-Yuan, Y.J.: Virus spreading in wireless sensor networks with a medium access control mechanism. Chin. Phys. B 22(4), 040206 (2013)

    Article  Google Scholar 

  37. Yang, Y., Zhu, S., Cao, G.: Improving sensor network immunity under worm attacks: a software diversity approach. In: Proceedings of ACM international symposium on Mobile Ad Hoc Networking and Computing, pp. 149–158 (2008)

    Google Scholar 

  38. Yang, S.H.: Wireless Sensor Networks. Principles, Design and Applications. Springer, London (2014)

    Book  Google Scholar 

  39. Yick, J., Mukherjee, B., Ghosai, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2009)

    Article  Google Scholar 

  40. Zhang, Z., Si, F.: Dynamics of a delayed SEIRS-V model on the transmission of worms in a wireless sensor network. Adv. Diff. Equat. 2014(1), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Zhu, L., Zhao, H.: Dynamical analysis and optimal control for a malware propagation model in an information network. Neurocomputing 149, 1370–1386 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Ministerio de Economía y Competitividad (Spain) and the European Union through FEDER funds under grants TIN2014-55325-C2-1-R and TIN2014-55325-C2-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Araceli Queiruga-Dios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Queiruga-Dios, A., Hernández Encinas, A., Martín-Vaquero, J., Hernández Encinas, L. (2017). Malware Propagation Models in Wireless Sensor Networks: A Review. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47364-2_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47363-5

  • Online ISBN: 978-3-319-47364-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics