Skip to main content

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

The thymus is a primary lymphoid organ where developing T cells (thymocytes) proliferate and differentiate before entering the systemic circulation to populate secondary lymphoid tissues and form the functional T cell repertoire. The thymus tightly controls the antigen specificity of these naive T cells in order to limit reaction with self antigens. In keeping with the importance of T cells to the health of the animal, their development and function are subject to many overlapping pathways and checkpoints. Therefore, many of the key players involved in T lymphocyte development, differentiation and function are potential targets for pharmaceutical intervention in aberrant T cell immune responses resulting in disease. This chapter outlines the complex function of the thymus, the range of changes seen as part of normal physiological and disease processes, and its response to immunotoxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIDz:

Autoimmune disease

AIRE:

Autoimmune regulator gene

APCs:

Antigen-presenting cells

APS:

Autoimmune polyendocrinopathy syndrome

CTL:

Cytotoxic T cells (CD8+)

CTLA-4:

Cytotoxic T lymphocyte antigen

DOCK8:

Dedicator of cytokinesis 8 protein

ETPs:

Early thymic progenitor cells

FOXP3:

Transcription factor forkhead box P3

iTreg:

Induced regulatory T-cells

Lck:

Lymphocyte-specific protein tyrosine kinase

MHC:

Major histocompatibility complex

nTreg:

Natural regulatory T cells (CD4+ CD25+ FOXP3+)

PD-1:

Programmed death-1

PSGL1:

P-selectin glycoprotein ligand 1

Rag1 and Rag2:

Recombinase-activating genes 1 and 2

Runx3:

Runt related transcription factor 3

S1P:

Sphingosine 1-phosphate

S1P1/S1PR1:

S1P receptor 1

Syk:

Spleen tyrosine kinase

T-bet:

T-box transcription factor

TCR:

T cell receptor (CD3)

TEC:

Thymic epithelial cells

Th:

T helper cells (CD4+)

Th0:

Naıve T-cells

ThPOK:

Th-inducing BTB/POZ domain-containing Kruppel-like zinc-finger transcription factor

TREG/Treg:

Regulatory T cell

ZAP-70:

Zeta chain associated protein-70

References

  • Agmon-Levin N et al (2011) Explosion of autoimmune diseases and the mosaic of old and novel factors. Cell Mol Immunol 8:189–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed S et al (1985) Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action. Am J Pathol 121:531–551

    CAS  Google Scholar 

  • Allan R, Nutt S (2014) Deciphering the epigenetic code of T lymphocytes. Immunol Rev 261:50–61

    Article  CAS  PubMed  Google Scholar 

  • Anderson G et al (1996) Cellular interactions in thymocyte development. Annu Rev Immunol 14:73–99

    Article  CAS  PubMed  Google Scholar 

  • Anderson M et al (2005) The cellular mechanism of aire control of T cell tolerance. Immunity 23:227–239

    Article  CAS  PubMed  Google Scholar 

  • Aspinall R (2000) Longevity and the immune response. Biogerontology 1:273–78

    Article  CAS  PubMed  Google Scholar 

  • Barrett J et al (2009) Cancer chemotherapy and immune regulation. Am J Immunol 5(1):8–16

    Article  CAS  Google Scholar 

  • Bernard C et al (2016) Thymoma associated with autoimmune diseases: 85 cases and literature review. Autoimmun Rev 15(2016):82–92

    Article  CAS  PubMed  Google Scholar 

  • Bernardi A et al (2015) Selective estrogen receptor modulators in T cell development and T cell dependent inflammation. Immunobiology. doi:10.1016/j.imbio.2015.05.009

    PubMed  Google Scholar 

  • Berzins S et al (1998) The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J Exp Med 187:1839–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazer B et al (2012) Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol 12:443–458

    Article  CAS  Google Scholar 

  • Boehm T, Swann J (2013) Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 13:831–838

    Article  CAS  PubMed  Google Scholar 

  • Bolon B (2012) Cellular and molecular mechanisms of autoimmune disease. Toxicol Pathol 40:216–229

    Article  CAS  PubMed  Google Scholar 

  • Bradley A et al (2012) Incidences and range of spontaneous findings in the lymphoid and haemopoietic system of control Charles River CD-1 Mice (Crl: CD-1(ICR) BR) used in chronic toxicity studies. Toxicol Pathol 40:375–381

    Article  PubMed  Google Scholar 

  • Brandes K et al (2004) Comparative morphologic and immunohistochemical investigation of spontaneously occurring thymomas in a colony of European hamsters. Vet Pathol 41:346–352

    Article  CAS  PubMed  Google Scholar 

  • Brelinska R, Warchol J (1997) Thymic nurse cells: their functional ultrastructure. Microsc Res Tech 38(3):250–266

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann V et al (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9:883–897

    Article  CAS  PubMed  Google Scholar 

  • Bruijntjes J et al (1993) Epithelium-free area in the thymic cortex of rats. Dev Immunol 3:113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley R (2002) Primary cellular immunodeficiencies. J Allergy Clin Immunol 109:747–757

    Article  CAS  PubMed  Google Scholar 

  • Bunting M et al (2011) Finding their niche: chemokines directing cell migration in the thymus. Immunol Cell Biol 89:185–196

    Article  CAS  PubMed  Google Scholar 

  • Burns-Naas LA et al (2001) Toxic responses of the immune system. In: Klaassen C (ed) Casarett and Doull’s Toxicology. The basic science of poisons, 6th edn. Mc Graw-Hill, New York, pp 419–470

    Google Scholar 

  • Buters J et al (1999) Cytochrome P450 CYP1B1 determines susceptibility to 7, 12 dimethylbenz[a]anthracene-induced lymphomas. Proc Natl Acad Sci USA 96:1977–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheroutre H et al (2013) CD4 CTL: living up to the challenge. Semin Immunol 25:273–281

    Article  CAS  PubMed  Google Scholar 

  • Clark L et al (1999) Cellular and molecular characterization of the Scurfy mouse mutant. J Immunol 162:2546–2554

    CAS  PubMed  Google Scholar 

  • Corman L (1985) Effects of specific nutrients on the immune response. Selected clinical applications. Med Clin North Am 69:759–91

    Article  CAS  PubMed  Google Scholar 

  • Crivellato E et al (2004) Setting the stage: an anatomist’s view of the immune system. Trends Immunol 25(4):210–217

    Article  CAS  PubMed  Google Scholar 

  • Cyster J (2009) Settling the thymus: immigration requirements. J Exp Med 206:731–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Waal E et al (1997) Differential effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin, bis(tri-n-butyltin) oxide and cyclosporine on thymus histophysiology. Crit Rev Toxicol 27:381–430

    Article  PubMed  Google Scholar 

  • Douek D, Altmann D (2000) T-cell apoptosis and differential human leucocyte antigen class II expression in human thymus. Immunology 99:249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Gerpe L, Rey-Mendez M (2001) Alterations induced by chronic stress in lymphocyte subsets of blood and primary and secondary immune organs of mice. BMC Immunol 2:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-gerpe L (2003) Evolution of the thymus size in response to physiological and random events throughout life. Microsc Res Tech 62:464–476

    Article  PubMed  Google Scholar 

  • Dunnick J et al (1997) Phenolphthalein induces thymic lymphomas accompanied by loss of the p53 wild type allele in heterozygous p53-deficient (+/−) mice. Toxicol Pathol 25(6):533–40

    Article  CAS  PubMed  Google Scholar 

  • Egwuagu C (2009) STAT3 in CD4+ T helper cell differentiation and inflammatory diseases. Cytokine 47(3):149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore S (2006) Enhanced histopathology evaluation of thymus. Toxicol Pathol 34:656–665

    Article  PubMed  PubMed Central  Google Scholar 

  • Ercolini A, Miller S (2009) The role of infections in autoimmune disease. Clin Exp Immunol 155:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ermann J, Fathman G (2001) Autoimmune diseases: genes, bugs and failed regulation. Nat Immunol 2:759–761

    Article  CAS  PubMed  Google Scholar 

  • Everds N et al (2013) Interpreting stress responses during routine toxicity studies: a review of the biology, impact, and assessment. Toxicol Pathol 41:560–614

    Article  PubMed  Google Scholar 

  • Fife B, Pauken K (2011) The role of the PD-1 pathway in autoimmunity and peripheral tolerance Ann NY Acad Sci. 1217:45–59

    Google Scholar 

  • Fontenot J, Rudensky A (2005) A well adapted regulatory contrivance:regulatory T cell development and the forkhead family transcription factor Foxp3. Nature Immunology (6):331–337

    Google Scholar 

  • Foreman O et al (2011) Opportunistic bacterial infections in breeding colonies of the NSG mouse strain. Vet Pathol 48(2):495–499

    Article  CAS  PubMed  Google Scholar 

  • Francisco L et al (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frith C et al (1985) A color atlas of hematopoietic pathology of mice. Toxicology Pathology Associates, Little Rock, AR, pp 5–13

    Google Scholar 

  • Frith C et al (2001) Hematopoietic system. In: Mohr U (ed) International Classification of Rodent Tumors the mouse, 1st edn. Springer, Heidelberg, pp 432–451

    Google Scholar 

  • Greaves P (2012) Hematopoietic and lymphatic systems, Histopathology of preclinical toxicity studies. Elsevier Academic, Amsterdam, pp 99–155

    Google Scholar 

  • Griem P et al (1998) Allergic and autoimmune reactions to xenobiotics: how do they arise? Immunol Today 19:133–41

    Article  CAS  PubMed  Google Scholar 

  • Gribble E et al (2007) Toxicity as a result of immunostimulation by biologics. Expert Opin Drug Metab Toxicol 3(2):209–234

    Article  CAS  PubMed  Google Scholar 

  • Good R, Lorenz E (1992) Nutrition and cellular immunity. lnt J lmmunopharmacol 14(3):361–366

    CAS  Google Scholar 

  • Gopinath C (1996) Pathology of toxic effects on the immune system. Inflam Res 45:S74–S78

    CAS  Google Scholar 

  • Gossens K et al (2009) Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25. J Exp Med 206:761–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haley P (2003) Species differences in the structure and function of the immune system. Toxicology 188:49–71

    Article  CAS  PubMed  Google Scholar 

  • Haley P (2013) Lymphoid system. In: Sahota P, Popp J, Hardisty J, Gopinath C (eds) Toxicologic pathology. Non clinical safety assessment, 1st edn. CRC, Boca Raton, FL, pp 517–560

    Chapter  Google Scholar 

  • Haley P et al (2005) STP position paper: best practice guideline for the routine pathology evaluation of the immune system. Toxicol Pathol 33:404–407

    Article  CAS  PubMed  Google Scholar 

  • Hansen C (1978) The nude gene and its effects. In: Fogh J, Giovanella B (eds) The nude mouse in experimental and clinical research, 1st edn. Academic, New York, pp 1–12

    Google Scholar 

  • Harrison M et al (2014) A CRISPR view of development. Genes Dev 28:1859–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henden A, Hill G (2015) Cytokines in graft-versus-host disease. J Immunol 194:4604–4612

    Article  CAS  PubMed  Google Scholar 

  • Herold M et al (2006) Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci 63:60–72

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa K et al (1984) Differential rate of age-related decline in immune functions in genetically defined mice with different tumour incidence and lifespan. Gerontology 30:223–233

    Article  CAS  PubMed  Google Scholar 

  • Holladay S (1999) Prenatal immunotoxicant exposure and postnatal autoimmune disease. Environ Health Perspect 107(Suppl 5):687–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu P et al (2014) Development and applications of CRISPR-Cas9 for genome editing. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy K (Ed) (2012) Janeway’s immunobiology, 8th edn. Garland Science, Taylor and Francis Group, London and New York

    Google Scholar 

  • Jain N et al (2010) Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc Natl Acad Sci USA 107:1524–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendal M, Clarke A (2000) The thymus in the mouse changes its activity during pregnancy: a study of the microenvironment. J Anat 197(3):393–411

    Article  Google Scholar 

  • Koller L (1987) Immunotoxicology today. Toxicol Pathol 15:346–51

    Article  CAS  PubMed  Google Scholar 

  • Owen J, Punt J, Stranford S (ed) (2013) Kuby immunology, 7th edn. W H Freeman, New York

    Google Scholar 

  • Lee I et al (1995) Presence of eosinophilic precursors in the human thymus: Evidence for intra-thymic differentiation of cells in eosinophilic lineage. Pathol Int 45:655–662

    Article  CAS  PubMed  Google Scholar 

  • Matloubian M et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    Article  CAS  PubMed  Google Scholar 

  • Meda F et al (2011) The epigenetics of autoimmunity. Cell Mol Immunol 8:226–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnick R, Sills R (2001) Comparative carcinogenicity of 1,3- butadiene, isoprene, and chloroprene in rats and mice. Chem Biol Interact 135–136:27–42

    Article  PubMed  Google Scholar 

  • Meriggioli M, Sanders D (2009) Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol 8(5):475–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michels A, Gottlieb P (2010) Autoimmune polyglandular syndromes. Nat Rev Endocrinol 6:270–277

    Article  CAS  PubMed  Google Scholar 

  • Miller J (2011) The golden anniversary of the thymus. Nat Rev Immunol 11:489–495

    Article  CAS  PubMed  Google Scholar 

  • Miller S, Weinmann A (2010) Molecular mechanisms by which T-bet regulates T-helper cell commitment. Immunol Rev 238(1):233–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal A et al (1988) Involution of thymic epithelium and low serum thymulin bioactivity in weanling mice subjected to severe food intake restriction or severe protein deficiency. Exp Mol Pathol 48:226–235

    Article  CAS  PubMed  Google Scholar 

  • Morton D et al (2008) N-Methyl-N-Nitrosourea (MNU): a positive control chemical for p53+/− mouse carcinogenicity studies. Toxicol Pathol 36:926–931

    Article  CAS  PubMed  Google Scholar 

  • Mucida D et al (2013) Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat Immunol 14:281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Münz C et al (2009) Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 9:246–258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naito T et al (2011) Transcriptional control of T-cell development. Int Immunol 23(11):661–668

    Article  CAS  PubMed  Google Scholar 

  • Nitta T et al (2008) Thymic microenvironments for T-cell repertoire formation. Adv Immunol 99:60–94

    Google Scholar 

  • Nguyen L, Ohashi P (2015) Clinical blockade of PD1 and LAG3- potential mechanisms of action. Nat Rev Immunol 15:45–56

    Article  CAS  PubMed  Google Scholar 

  • Nonoyama S et al (1993) Strain-dependent leakiness of mice with severe combined immune deficiency. J Immunol 150(9):3817–3824

    CAS  PubMed  Google Scholar 

  • Notarangelo L (2014) Combined immunodeficiencies with nonfunctional T lymphocytes. Adv Immunol 121:121–190

    Article  CAS  PubMed  Google Scholar 

  • Ochs H et al (2002) Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome and the Scurfy mutant mouse. Immunol Allergy Clin North Am 22:357–68

    Article  Google Scholar 

  • Ohaegbulam K et al (2015) Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med 21:24–33

    Article  CAS  PubMed  Google Scholar 

  • Pardoll D (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker G et al (2015) Histological Features of Postnatal Development of Immune System Organs in the Sprague-Dawley Rat Toxicol Pathol 43(6):794–815

    Google Scholar 

  • Pearse G (2006) Histopathology of the thymus. Toxicol Pathol 34:515–547

    Article  PubMed  Google Scholar 

  • Pearse G et al (2009) Time-course study of the immunotoxic effects of the anticancer drug chlorambucil in the rat. Toxicol Pathol 37:887–901

    Article  CAS  PubMed  Google Scholar 

  • Perryman L (2004) Molecular pathology of severe combined immunodeficiency in mice, horses, and dogs. Vet Pathol 2:95–100

    Article  Google Scholar 

  • Peterson R (2012) Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol 40:186–204

    Article  CAS  PubMed  Google Scholar 

  • Plecas-Solarovic B et al (2006) Morphometrical characteristics of age-associated changes in the thymus of old male Wistar rats. Anat Histol Embryol 35:380–386

    Article  CAS  PubMed  Google Scholar 

  • Ploeman J-P et al (2003) The incidence of thymic B lymphoid follicles in healthy beagle dogs. Toxicol Pathol 31(2):214–219

    Article  CAS  Google Scholar 

  • Preziosi R et al (1995) Quantitative determination of thymic eosinophilia in swine. Ital J Anat Embryol 100(3):171–178

    Google Scholar 

  • Rao T, Richardson B (1999) Environmentally induced autoimmune diseases: potential mechanisms. Environ Health Perspect 107(Suppl 5):737–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Reindel J et al (2001) Systemic proliferative changes and clinical signs in cynomolgus monkeys administered a recombinant derivative of human epidermal growth factor. Toxicol Pathol 29(2):159–173

    Article  CAS  PubMed  Google Scholar 

  • Reis B et al (2013) Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cellimmunity. Nat Immunol 14:271–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezzani R (2004) Cyclosporine A and adverse effects on organs: histochemical studies. Prog Histochem Cytochem 39:85–128

    Article  CAS  PubMed  Google Scholar 

  • Robson L, Schwarz M (1975) Vitamin B6 deficiency and the lymphoid system. II. Effects of vitamin B6 deficiency in utero on the immunological competence of the offspring. Cell Immunol 16:145–62

    Article  CAS  PubMed  Google Scholar 

  • Rogner U, Avner P (2003) Congenic mice: cutting tools for complex immune disorders. Nat Rev Immunol 3:243–252

    Article  CAS  PubMed  Google Scholar 

  • Rosai J, Levine G (1976) Tumors of the thymus. Armed Forces Institute of Pathology, vol 2, Fasc 13. Washington, DC, pp 34–37

    Google Scholar 

  • Rosenberg H (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13:9–22

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg E, Taghon T (2005) Molecular genetics of T cell development. Annu Rev Immunol 23:601–49

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S (2005) Naturally arising FOXP3-expressing CD25 + CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6(4):345–52

    Article  CAS  PubMed  Google Scholar 

  • Samarkos M, Vaiopoulos G (2005) The role of infections in the pathogenesis of autoimmune diseases. Curr Drug Targets Inflamm Allergy 4:71–75

    Article  Google Scholar 

  • Sano S et al (2001) Stat 3 in thymic epithelial cells is essential for postnatal maintenance of thymic architecture and thymocytes survival. Immunity 15:261–273

    Article  CAS  PubMed  Google Scholar 

  • Sayegh M et al (1998) The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med 338:1813–1821

    Article  CAS  PubMed  Google Scholar 

  • Schiffenbauer J et al (1998) The possible role of bacterial superantigens in the pathogenesis of autoimmune disorders. Immunol Today 19:117–20

    Article  CAS  PubMed  Google Scholar 

  • Schwartz R (2003) T cell anergy. Annu Rev Immunol 21:305–34

    Article  CAS  PubMed  Google Scholar 

  • Schuurman H et al (1994) Histopathology of the immune system as a tool to assess immunotoxicity. Toxicology 86:187–212

    Article  CAS  PubMed  Google Scholar 

  • Seymour R et al (2006) Abnormal lymphoid organ development in immunodeficient mutant mice. Vet Pathol 43:401–423

    Article  CAS  PubMed  Google Scholar 

  • Shahar S et al (2011) Thymoma and autoimmunity. Cell Mol Immunol 8:199–202

    Article  CAS  Google Scholar 

  • Shultz LD et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R Ï’null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174:6477–6489

    Article  CAS  PubMed  Google Scholar 

  • Shultz LD et al (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 12:786–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith D, Germolec D (1999) Introduction to immunology and autoimmunity. Environ Health Perspect 107(Suppl 5):661–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith S, Ossa-Gomez L (1981) A quantitative histologic comparison of the thymus in 100 healthy and diseased adults. Am J Clin Pathol 76:657–65

    Article  CAS  PubMed  Google Scholar 

  • Snyder P (2012) Immunology for the toxicologic pathologist. Toxicol Pathol 40:143–147

    Article  CAS  PubMed  Google Scholar 

  • Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11:403–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoor M et al (2008) Characterisation of age and gender related changes in the spleen and thymus from control cynomologous macaques used in toxicity studies. Toxicol Pathol 36:695–704

    Article  PubMed  Google Scholar 

  • Stefanski S et al (1990) Spleen, lymph node and thymus. In: Boorman G, Eustis S, Elwell M, Montgomery C, MacKenzie W (eds) Pathology of the Fischer rat, 1st edn. Academic, San Diego, CA, pp 316–393

    Google Scholar 

  • Suster S, Rosai J (1992) Thymus. In: Sternberg S (ed) Histology for pathologists, 1st edn. Raven, New York, pp 261–275

    Google Scholar 

  • Szymanska H et al (2014) Neoplastic and nonneoplastic lesions in aging mice of unique and common inbred strains contribution to modeling of human neoplastic diseases. Vet Pathol 51(3):663–679

    Article  CAS  PubMed  Google Scholar 

  • Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6:127–135

    Article  CAS  PubMed  Google Scholar 

  • Taub D et al (2005) Insights into thymic ageing and regeneration. Immunol Rev 205:72–93

    Article  CAS  PubMed  Google Scholar 

  • Thomson A et al (2009) Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol 9:324–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Throsby M et al (2000) CD11c + eosinophils in the murine thymus: developmental regulation and recruitment upon Class 1 MHC-restricted thymocyte depletion. J Immunol 165:1965–1975

    Article  CAS  PubMed  Google Scholar 

  • van Ewijk W et al (1988) Lymphoid microenvironments in the thymus and lymph node. Scanning Microsc 2(4):2129–2140

    PubMed  Google Scholar 

  • van Ewijk W et al (1994) Crosstalk in mouse thymus. Immunol Today 15:214–217

    Article  PubMed  Google Scholar 

  • Venkataraman K et al (2008) Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 102:669–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldron-Lynch F, Herold M (2011) Immunomodulatory therapy to preserve pancreatic β-cell function in type 1 diabetes. Nat Rev Drug Discov 10:439–452

    Article  CAS  PubMed  Google Scholar 

  • Ward J et al (1999) Thymus spleen and lymph nodes. In: Maronpot R (ed) Pathology of the mouse, 1st edn. Cache River, Vienna IL, pp 333–360

    Google Scholar 

  • Ward J (2006) Lymphomas and leukemias in mice. Exp Toxicol Pathol 57:377–381

    Article  PubMed  Google Scholar 

  • Ward J et al (2012) Differentiation of rodent immune and hematopoietic system reactive lesions from neoplasias. Toxicol Pathol 40:425–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe N et al (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4 + CD25+ regulatory T cells in human thymus. Nature 436(7054):1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Weaver J (2012) Establishing the carcinogenic risk of immunomodulatory drugs. Toxicol Pathol 40:267–271

    Article  CAS  PubMed  Google Scholar 

  • Wei S et al (2005) Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol 6:1228–1235

    Article  CAS  PubMed  Google Scholar 

  • Wilde B et al (2010) T cells in ANCA-associated vasculitis: what can we learn from lesional versus circulating T cells? Arthritis Res Ther 12:204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willcox N et al (2008) Autoimmunizing mechanisms in thymoma and thymus. Ann N Y Acad Sci 1132:163–73

    Article  CAS  PubMed  Google Scholar 

  • Williams K et al (2007) T cell immune reconstitution following lymphodepletion. Semin Immunol 19:318–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodbine L et al (2013) PRKDC mutations in a SCID patient with profound neurological abnormalities. J Clin Invest 123(7):2969–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zisimopoulou P et al (2013) Serological diagnostics in myasthenia gravis based on novel assays and recently identified antigens. Autoimmun Rev 12:924–30

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail Pearse B.V.M. & S., D.A.C.V.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pearse, G. (2017). Thymus. In: Parker, G. (eds) Immunopathology in Toxicology and Drug Development. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-47385-7_1

Download citation

Publish with us

Policies and ethics