Skip to main content

Asynchronous Coordination Under Preferences and Constraints

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9988))

  • 558 Accesses

Abstract

Adaptive renaming can be viewed as a coordination task involving a set of asynchronous agents, each aiming at grabbing a single resource out of a set of resources Similarly, musical chairs is also defined as a coordination task involving a set of asynchronous agents, each aiming at picking one of a set of available resources, where every agent comes with an a priori preference for some resource. We foresee instances in which some combinations of resources are allowed, while others are disallowed.

We model these constraints as an undirected graph whose nodes represent the resources, and an edge between two resources indicates that these two resources cannot be used simultaneously. In other words, the sets of resources that are allowed are those which form independent sets.

We assume that each agent comes with an a priori preference for some resource. If an agent’s preference is not in conflict with the preferences of the other agents, then this preference can be grabbed by the agent. Otherwise, the agents must coordinate to resolve their conflicts, and potentially choose non preferred resources. We investigate the following problem: given a graph, what is the maximum number of agents that can be accommodated subject to non-altruistic behaviors of early arriving agents?

Just for cyclic constraints, the problem is surprisingly difficult. Indeed, we show that, intriguingly, the natural algorithm inspired from optimal solutions to adaptive renaming or musical chairs is sub-optimal for cycles, but proven to be at most 1 to the optimal. The main message of this paper is that finding optimal solutions to the coordination with constraints and preferences task requires to design “dynamic” algorithms, that is, algorithms of a completely different nature than the “static” algorithms used for, e.g., renaming.

A. Castañeda and S. Rajsbaum are supported by UNAM-PAPIIT IA101015 and IN107714. A. Castañeda is also supported by the project CONACYT C394/2016/271602. S. Rajsbaum also received support from ECOS-CONACYT and LAISLA. P. Fraigniaud received support from the ANR project DISPLEXITY, and from the INRIA project GANG. M. Roy is supported by CPSLab project H2020-ICT-644400 at http://www.cpse-labs.eu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. J. ACM 40(4), 873–890 (1993)

    Article  MATH  Google Scholar 

  2. Afek, Y., Babichenko, Y., Feige, U., Gafni, E., Linial, N., Sudakov, B.: Oblivious collaboration. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 489–504. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24100-0_45

    Chapter  Google Scholar 

  3. Afek, Y., Babichenko, Y., Feige, U., Gafni, E., Linial, N., Sudakov, B.: Musical chairs. SIAM J. Discrete Math. 28(3), 1578–1600 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous environment. J. ACM 37(3), 524–548 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Attiya, H., Welch, J.: Distributed Computing Fundamentals, Simulations, and Advanced Topics, 2nd edn. Wiley, New York (2004)

    MATH  Google Scholar 

  6. Baker, B.S., Coffman Jr., E.G.: Mutual exclusion scheduling. Theor. Comput. Sci. 162(2), 225–243 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodlaender, H.L., Jansen, K.: Restrictions of graph partition problems. Part I. Theor. Comput. Sci. 148(1), 93–109 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for \(t\)-resilient asynchronous computations. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC 1993, pp. 91–100. ACM, New York (1993)

    Google Scholar 

  9. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: Proceedings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing, PODC 1993, pp. 41–51. ACM, New York (1993)

    Google Scholar 

  10. Castañeda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared memory systems: an introduction. Comput. Sci. Rev. 5(3), 229–251 (2011)

    Article  MATH  Google Scholar 

  11. Even, G., Halldórsson, M.M., Kaplan, L., Ron, D.: Scheduling with conflicts: online and offline algorithms. J. Sched. 12(2), 199–224 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, San Rafeal (2012)

    MATH  Google Scholar 

  13. Gafni, E., Mostéfaoui, A., Raynal, M., Travers, C.: From adaptive renaming to set agreement. Theor. Comput. Sci. 410(14), 1328–1335 (2009). Structural Information and Communication Complexity (SIROCCO 2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gafni, E., Rajsbaum, S.: Recursion in distributed computing. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 362–376. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16023-3_30

    Chapter  Google Scholar 

  15. Garey, M.R., Graham, R.L.: Bounds for multiprocessor scheduling with resource constraints. SIAM J. Comput. 4(2), 187–200 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Halldórsson, M.M., Kortsarz, G., Proskurowski, A., Salman, R., Shachnai, H., Telle, J.A.: Multicoloring trees. Inf. Comput. 180(2), 113–129 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combinatorial Topology. Morgan Kaufmann, San Francisco (2013)

    MATH  Google Scholar 

  18. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–923 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Raynal, M.: Concurrent Programming: Algorithms, Principles, and Foundations. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  20. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Castañeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Castañeda, A., Fraigniaud, P., Gafni, E., Rajsbaum, S., Roy, M. (2016). Asynchronous Coordination Under Preferences and Constraints. In: Suomela, J. (eds) Structural Information and Communication Complexity. SIROCCO 2016. Lecture Notes in Computer Science(), vol 9988. Springer, Cham. https://doi.org/10.1007/978-3-319-48314-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48314-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48313-9

  • Online ISBN: 978-3-319-48314-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics