Skip to main content

Concurrent Use of Radiation Therapy and Targeted Molecules in the Breast Cancer Treatment

  • Chapter
  • First Online:
Breast Cancer

Abstract

The radiotherapy is an integral part of the treatment of breast cancer with the benefit in terms of locoregional control as well as the decreasing of the mortality.

New systemic targeted treatments are coming rapidly in the clinical practice, and some of them are used during long periods, and this use is associated with the radiotherapy. All these treatments have an impact on local control and survival.

Few studies have evaluated the delivery of concurrent radiotherapy and systemic targeted treatments in terms of efficacy, as well as in terms of toxicity.

It is urgent to evaluate the efficacy and toxicity of their association with the radiotherapy in the clinical studies.

Highly performing radiotherapy techniques must be used.

Parallel biological studies are needed to find the predictors of the tumor responses.

The radiotherapy is an integral part of the treatment of breast cancer with the benefit in terms of locoregional control as well as the decreasing of the mortality. New systemic treatments are coming rapidly in the clinical practice. The purpose of this work is to describe and to analyze the available data, review the literature, and show the futures directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spector NL, Blackwell KL (2009) Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor-2 positive breast cancer. J Clin Oncol 27:5838–5847

    Article  CAS  PubMed  Google Scholar 

  2. Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  PubMed  Google Scholar 

  3. Voduc KD, Cheang MC, Tyldesley S et al (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28:1684–1691

    Article  PubMed  Google Scholar 

  4. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  PubMed  Google Scholar 

  5. Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  CAS  PubMed  Google Scholar 

  6. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684

    Article  CAS  PubMed  Google Scholar 

  7. Clarke M, Collins R, Darby S et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106

    Article  CAS  PubMed  Google Scholar 

  8. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Darby S, Mc Gale P et al (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis on individual patient data for 10,801 women in 17 randomised trials. Lancet 378:1707–1716

    Article  Google Scholar 

  9. Pietras RJ, Poen JC, Gallardo D et al (1999) Monoclonal antibody to HER-2/neu receptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. Cancer Res 59:1347–1355

    CAS  PubMed  Google Scholar 

  10. Belkacémi Y, Gligorov J, Ozsahin M et al (2008) Concurrent trastuzumab with adjuvant radiotherapy in HER2-positive breast cancer patients: acute toxicity analyses from the French multicentric study. Ann Oncol 19:1110–1116

    Article  PubMed  Google Scholar 

  11. Shaffer R, Tyldesley S, Rolles M et al (2009) Acute cardiotoxicity with concurrent trastuzumab and radiotherapy including internal mammary chain nodes: a retrospective single-institution study. Radiother Oncol 90:122–126

    Article  CAS  PubMed  Google Scholar 

  12. Bellon JR, Gover MT, Burstein HJ et al (2005) Concurrent trastuzumab and radiation therapy (RT) in the adjuvant treatment of breast cancer. Int J Radiat Oncol Biol Phys 63(Suppl 1):S55–S56

    Article  Google Scholar 

  13. Caussa L, Kirova YM, Gault N et al (2011) The acute skin and heart toxicity of a concurrent association of trastuzumab and locoregional breast radiotherapy including internal mammary chain: a single-institution study. Eur J Cancer 47:65–73

    Article  CAS  PubMed  Google Scholar 

  14. Raben A, Sammons S, Hanlon A et al (2006) Comparison of acute breast and chest wall toxicity in women treated with external beam irradiation with and without concurrent herceptin in a community cancer center. Int J Radiat Oncol Biol Phys 66(Suppl):S541–S542

    Article  Google Scholar 

  15. Horton JK, Halle J, Ferraro M et al (2010) Radiosensitization of chemotherapy-refractory, locally advanced or locally recurrent breast cancer with trastuzumab: a phase II trial. Int J Radiat Oncol Biol Phys 76:998–1004

    Article  CAS  PubMed  Google Scholar 

  16. Bollet MA, Sigal-Zafrani B, Gambotti L et al (2006) Pathological response to preoperative concurrent chemo-radiotherapy for breast cancer: results of a phase II study. Eur J Cancer 42:2286–2295

    Article  CAS  PubMed  Google Scholar 

  17. Roché H, Fumoleau P, Spielmann M et al (2006) Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC PACS 01 trial. J Clin Oncol 24:5664–5671

    Article  PubMed  Google Scholar 

  18. Jacob J, Belin L, Pierga JY, Gobillion A, Vincent-Salomon A, Dendale R, Beuzeboc P, Campana F, Fourquet A, Kirova YM (2014) Concurrent administration of trastuzumab with locoregional breast radiotherapy: long-term results of a prospective study. Breast Cancer Res Treat 148:345–353

    Article  CAS  PubMed  Google Scholar 

  19. Hurkmans CW, Borger JH, Bos LJ et al (2000) Cardiac and lung complication probabilities after breast cancer irradiation. Radiother Oncol 55:145–151

    Article  CAS  PubMed  Google Scholar 

  20. Kong FM, Klein EE, Bradley JD et al (2002) The impact of central lung distance, maximal heart distance, and radiation technique on the volumetric dose of the lung and heart dose for intact breast radiation. Int J Radiat Oncol Biol Phys 54:963–971

    Article  PubMed  Google Scholar 

  21. Kirova YM, Hijal T, Campana F, Fournier-Bidoz N, Stilhart A, Dendale R, Fourquet A (2013) Whole breast radiotherapy in the lateral decubitus position: a dosimetric and clinical solution to decrease the doses to the organs at risk (OAR). Radiother Oncol 10(3):477–481

    Google Scholar 

  22. Fournier-Bidoz N, Kirova YM, Campana F, Dendale R, Fourquet A (2012) Simplified field-in-field technique for a large-scale implementation in breast radiation treatment. Med Dosim 37(2):131–137

    Article  PubMed  Google Scholar 

  23. Belkacémi Y, Gligorov J (2010) Concurrent trastuzumab—internal mammary irradiation for HER2 positive breast cancer: “It hurts to be on the cutting edge”. Radiother Oncol 94:119–120

    Article  PubMed  Google Scholar 

  24. Kirova YM, Campana F, Fournier-Bidoz N et al (2007) Postmastectomy electron beam chest wall irradiation in women with breast cancer: a clinical step toward conformal electron therapy. Int J Radiat Oncol Biol Phys 69:1139–1144

    Article  PubMed  Google Scholar 

  25. Halyard MY, Pisansky TM, Dueck AC et al (2009) Radiotherapy and adjuvant trastuzumab in operable breast cancer: tolerability and adverse event data from the NCCTG phase III trial N9831. J Clin Oncol 27:2638–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Procter M, Suter TM, de Azambuja E et al (2010) Longer-term assessment of trastuzumab-related cardiac adverse events in the Herceptin adjuvant (HERA) trial. J Clin Oncol 28:3422–3428

    Article  PubMed  Google Scholar 

  27. Tarantini L, Cioffi G, Gori S et al (2012) Trastuzumab adjuvant chemotherapy and cardiotoxicity in real-world women with breast cancer. J Card Fail 18:113–119

    Article  CAS  PubMed  Google Scholar 

  28. Harris EE, Correa C, Hwang WT et al (2006) Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol 24:4100–4106

    Article  PubMed  Google Scholar 

  29. Taylor CW, McGale P, Povall JM et al (2009) Estimating cardiac exposure from breast cancer radiotherapy in clinical practice. Int J Radiat Oncol Biol Phys 73:1061–1068

    Article  CAS  PubMed  Google Scholar 

  30. Coon AB, Dickler A, Kirk MC et al (2010) Tomotherapy and multifield intensity-modulated radiotherapy planning reduce cardiac doses in left-sided breast cancer patients with unfavorable cardiac anatomy. Int J Radiat Oncol Biol Phys 78:104–110

    Article  PubMed  Google Scholar 

  31. de Almeida CE, Fournier-Bidoz N, Massabeau C et al (2012) Potential benefits of using cardiac gated images to reduce the dose to the left anterior descending coronary during radiotherapy of left breast and internal mammary nodes. Cancer Radiother 16:44–51

    Article  PubMed  Google Scholar 

  32. Chargari C, Idrissi HR, Pierga JY, Bollet MA, Diéras V, Campana F, Cottu P, Fourquet A, Kirova YM (2011) Preliminary results of whole brain radiotherapy with concurrent trastuzumab for treatment of brain metastases in breast cancer patients. Int J Radiat Oncol Biol Phys 81(3):631–636

    Article  PubMed  Google Scholar 

  33. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J (2001) Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 61:4744–4749

    CAS  PubMed  Google Scholar 

  34. Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M (2009) Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res 69:9330–9336

    Article  CAS  PubMed  Google Scholar 

  35. Nahta R, Hung M-C, Esteva FJ (2004) The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 64:2343–2346

    Article  CAS  PubMed  Google Scholar 

  36. Portera CC, Walshe JM, Rosing DR, Denduluri N, Berman AW, Vatas U et al (2008) Cardiac toxicity and efficacy of trastuzumab combined with pertuzumab in patients with [corrected] human epidermal growth factor receptor 2-positive metastatic breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 14:2710–2716

    Article  CAS  Google Scholar 

  37. Baselga J, Gelmon KA, Verma S, Wardley A, Conte P, Miles D et al (2010) Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J Clin Oncol Off J Am Soc Clin Oncol 28:1138–1144

    Article  CAS  Google Scholar 

  38. Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA et al (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273:10261–10269

    Article  CAS  PubMed  Google Scholar 

  39. Fedele C, Riccio G, Malara AE, D’Alessio G, De Lorenzo C (2012) Mechanisms of cardiotoxicity associated with ErbB2 inhibitors. Breast Cancer Res Treat 134:595–602

    Article  CAS  PubMed  Google Scholar 

  40. Baselga J, Cortés J, Kim S-B, Im S-A, Hegg R, Im Y-H et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366:109–119

    Article  CAS  PubMed  Google Scholar 

  41. Scodan RL, Stevens D, Brain E, Floiras JL, Cohen-Solal C, Lande BDL et al (2009) Breast cancer with synchronous metastases: survival impact of exclusive locoregional radiotherapy. J Clin Oncol 27:1375–1381

    Article  PubMed  Google Scholar 

  42. Scodan RL, Ali D, Stevens D (2010) Exclusive and adjuvant radiotherapy in breast cancer patients with synchronous metastases. BMC Cancer 10(1):630

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ajgal Z, De Percin S, Dieras V, Pierga JY, Campana F, Fourquet A, Kirova YM (2017) Combination of radiotherapy and double blockade HER2 with pertuzumab and trastuzumab in HER2 positive metastatic or locally recurrent unresectable and/or metastatic breast cancer: assessment of toxicity. Cancer Radiother. doi:10.1016/j.canrad.2016.10.002. [Epub ahead of print] PMID 28347625

  44. Levy C, Allouache D, Lacroix J, Dugué AE, Supiot S, Campone M, Mahe M, Kichou S, Leheurteur M, Hanzen C, Dieras V, Kirova Y, Campana F, Le Rhun E, Gras L, Bachelot T, Sunyach MP, Hrab I, Geffrelot J, Gunzer K, Constans JM, Grellard JM, Clarisse B, Paoletti X (2014) REBECA: a phase I study of bevacizumab and whole-brain radiation therapy for the treatment of brain metastasis from solid tumours. Ann Oncol 25(12):2351–2356

    Article  CAS  PubMed  Google Scholar 

  45. Chira C, Jacob J, Derhem N, Bollet MA, Campana F, Marchand V, Pierga JY, Fourquet A, Kirova YM (2011) Preliminary experience of whole-brain radiation therapy (WBRT) in breast cancer patients with brain metastases previously treated with bevacizumab-based chemotherapy. J Neuro-Oncol 105(2):401–408

    Article  CAS  Google Scholar 

  46. Cameron D, Brown J, Dent R, Jackisch C, Mackey J, Pivot X et al (2013) Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol 14(10):933–942

    Article  CAS  PubMed  Google Scholar 

  47. Goyal S, Rao MS, Khan A, Huzzy L, Green C, Haffty BG (2011) Evaluation of acute locoregional toxicity in patients with breast cancer treated with adjuvant radiotherapy in combination with bevacizumab. Int J Radiat Oncol Biol Phys 79:408–413

    Article  CAS  PubMed  Google Scholar 

  48. Pernin V, Belin L, Cottu P, Bontemps P, Lemanski C, De La Lande B, Baumann P, Missohou F, Levy C, Peignaux K, Bougnoux P, Denis F, Bollet M, Dendale R, Vago NA, Campana F, Fourquet A, Kirova YM (2014) Radiotherapy associated with concurrent bevacizumab in patients with non-metastatic breast cancer. Breast 23(6):816–820

    Article  PubMed  Google Scholar 

  49. Pernin V, Belin L, Cottu P, Bontemps P, Lemanski C, De La Lande B, Baumann P, Missohou F, Levy C, Peignaux K, Reynaud-Bougnoux A, Denis F, Gobillion A, Bollet M, Vago NA, Dendale R, Campana F, Fourquet A, Kirova YM (2015) Late toxicities and outcomes of adjuvant radiotherapy combined with concurrent bevacizumab in patients with triple-negative non-metastatic breast cancer. Br J Radiol 88(1048):20140800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aebi S, Davidson T, Gruber G, Cardoso F, ESMO Guidelines Working Group (2011) Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 22(Suppl 6):vi12–vi24

    PubMed  Google Scholar 

  51. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948

    Article  CAS  PubMed  Google Scholar 

  52. Hudis CA, Gianni L (2011) Triple-negative breast cancer: an unmet medical need. Oncologist 16(Suppl 1):1–11

    Article  PubMed  Google Scholar 

  53. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–134

    Article  CAS  PubMed  Google Scholar 

  54. Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D et al (2007) BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26(14):2126–2132

    Article  CAS  PubMed  Google Scholar 

  55. Hastak K, Alli E, Ford JM (2010) Synergistic chemosensitivity of triple-negative breast cancer cell lines to poly(ADP-ribose) polymerase inhibition, gemcitabine, and cisplatin. Cancer Res 70(20):7970–7980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917

    Article  CAS  PubMed  Google Scholar 

  57. Dungey FA, Löser DA, Chalmers AJ (2008) Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys 72(4):1188–1197

    Article  CAS  PubMed  Google Scholar 

  58. Noël G, Godon C, Fernet M, Giocanti N, Mégnin-Chanet F, Favaudon V (2006) Radiosensitization by the poly(ADP-ribose) polymerase inhibitor 4-amino-1,8-naphthalimide is specific of the S phase of the cell cycle and involves arrest of DNA synthesis. Mol Cancer Ther 5(3):564–574

    Article  PubMed  Google Scholar 

  59. Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S et al (2004) Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96(1):56–67

    Article  CAS  PubMed  Google Scholar 

  60. Ali M, Telfer BA, McCrudden C, O’Rourke M, Thomas HD, Kamjoo M et al (2009) Vasoactivity of AG014699, a clinically active small molecule inhibitor of poly(ADP-ribose) polymerase: a contributory factor to chemopotentiation in vivo? Clin Cancer Res Off J Am Assoc Cancer Res 15(19):6106–6112

    Article  CAS  Google Scholar 

  61. Senra JM, Telfer BA, Cherry KE, McCrudden CM, Hirst DG, O’Connor MJ et al (2011) Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft. Mol Cancer Ther 10(10):1949–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pouzoulet F, Pernin V, Roulin C, Alcade H, Assayag F, Mégnin-Chanet F et al (2013) Abstract 4428: pre-clinical studies of the therapeutic effect of a PARP inhibitor combined with radiotherapy for breast cancer treatment. Cancer Res 73(8 Supplement):4428

    Article  Google Scholar 

  63. Chargari C, Kirova YM, Cottu P, Salmon RJ, Fourquet A (2009) Progressive inflammatory breast cancer in patient receiving chemotherapy: the importance of radiotherapy as a part of locoregional treatment. Radiother Oncol 90(1):160–161

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youlia M. Kirova M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirova, Y.M., Fourquet, A. (2017). Concurrent Use of Radiation Therapy and Targeted Molecules in the Breast Cancer Treatment. In: Veronesi, U., Goldhirsch, A., Veronesi, P., Gentilini, O., Leonardi, M. (eds) Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48848-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48848-6_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48846-2

  • Online ISBN: 978-3-319-48848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics