Skip to main content

Complex Systems Approach to the Study of Posture and Locomotion in Older People

  • Chapter
  • First Online:
Locomotion and Posture in Older Adults

Abstract

Traditionally, the aging process has been viewed as something negative, a phenomenon that eventually results in frailty. However, the development and adaptive processes involved with the aging process are now understood as part of a nonlinear, systemic reorganization of the body. This view sees the aging body—a biological system—as having subsystems that interact at different levels and with different time scales. In the present chapter, we discussed some concepts associated with the aging process. We began by using a dynamic systems perspective to discuss changes in movement patterns of older individuals. According to this perspective, effects of the aging process are not due to isolated changes in different structures, but to collective changes in interacting subsystems. We then presented the role of functional variability, in particular addressing postural control by illustrating that increases in body sway can be the result of an active exploration of the limits of stability. In the last two sections, we discussed in more detail how the application of the dynamic systems approach can help to explain older adults’ postural control strategies, as well as the flexibility of their gait patterns. We employed general concepts of a dynamic systems perspective to discuss the aging process, using the notions of variability, adaptive potential, and complex multi-scale levels or dimensions and multi-time sources of constraints. Specifically, we included the functional role of aging on posture and locomotion control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Michaels and Beek [14] identified three perspectives related to the study of information and action that currently prevail in studies of movement science and ecological psychology. The first perspective is direct perception, originally centered in Gibson’s [15] assumptions. The second is related to the kinetic theory (thermodynamics) developed by Kugler, Kelso, and Turvey [16, 17]. The third is the dynamic systems approach, which employs tools and the analytical application of nonlinear dynamics to the study of movement coordination. Haken’s [18] synergetics is a conceptual view in dynamic systems that deals with spontaneous pattern formation (i.e., self-organization) arising from systems far from their equilibrium point.

  2. 2.

    Haptic anchoring tasks require the manipulation of two strings, one in each hand, with an attached load mass for the purpose of reducing postural sway. In such tasks, an individual is required to pull the load just enough to keep the string tight, but without lifting the load from the surface of support. The tension of strings and loads’ resistance during these exploratory actions (haptic anchoring) results in reduction of postural sway [41, 42].

  3. 3.

    Unpublished study with data extracted from a research report: Mauerberg-deCastro E, Magre FL. (2015). Ancoragem háptica e controle postural em idosos [Haptic anchoring and postural control in older adults]. Research report. São Paulo State University, Brazil.

References

  1. Hong SL, James EG, Newell KM. Coupling and irregularity in the aging motor system: tremor and movement. Neurosci Lett. 2008;433:119–24. doi:10.1016/j.neulet.2007.12.056.

    Article  CAS  PubMed  Google Scholar 

  2. Spirduso WW, Francis KL, MacRae PG. Physical dimensions of aging. 2nd ed. Champaign: Human Kinetics; 2005.

    Google Scholar 

  3. Sleimen-Malkoun R, Temprado JJ, Hong SL. Aging induced loss of complexity and dedifferentiation: consequences for coordination dynamics within and between brain, muscular and behavioral levels. Front Aging Neurosci. 2014;6:140. doi:10.3389/fnagi.2014.00140.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Leyk D, Rüther T, Wunderlich M, Sievert A, Eßfeld D, Witzki A, et al. Physical performance in middle age and old age: good news for our sedentary and aging society. Dtsch Arztebl Int. 2010;107:809–16. doi:10.3238/arztebl.2010.0809.

    PubMed  PubMed Central  Google Scholar 

  5. Rittweger J, Kwiet A, Felsenberg D. Physical performance in aging elite athletes--challenging the limits of physiology. J Musculoskelet Neuronal Interact. 2004;4:159–60.

    CAS  PubMed  Google Scholar 

  6. Van Lummel RC, Walgaard S, Pijnappels M, Elders PJM, Garcia-Aymerich J, Van Dieën JH, Beek PJ. Physical performance and physical activity in older adults: associated but separate domains of physical function in old age. PLoS One. 2015;10, e0144048. doi:10.1371/journal.pone.0144048.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Iezzoni LI, McCarthy EP, Davis RB, Siebens H. Mobility difficulties are not only a problem of old age. J Gen Intern Med. 2001;16:235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lord S, Sherrington C, Menz H, Close J. Falls in older people: risk factors and strategies for prevention. 2nd ed. Cambridge: Cambridge University Press; 2007.

    Book  Google Scholar 

  9. Siqueira FV, Facchini LA, Piccini RX, Tomasi E, Thumé E, Silveira DS, et al. Prevalência de quedas em idosos e fatores associados [Prevalence of falls and associated factors in the elderly]. Rev Saude Publica. 2007;41:749–56. doi:10.1590/S0034-89102007000500009.

    Article  PubMed  Google Scholar 

  10. Berg WP, Alessio HM, Mills EM, Tong C. Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing. 1997;26:261–8.

    Article  CAS  PubMed  Google Scholar 

  11. Norton R, Campbell AJ, Lee-Joe T, Robinson E, Butler M. Circumstances of falls resulting in hip fractures among older people. J Am Geriatr Soc. 1997;45:1108–12.

    Article  CAS  PubMed  Google Scholar 

  12. Tinetti ME. Factors associated with serious injury during falls by ambulatory nursing home residents. J Am Geriatr Soc. 1987;35:644–8.

    Article  CAS  PubMed  Google Scholar 

  13. Menant JC, Perry SD, Steele JR, Menz HB, Munro BJ, Lord SR. Effects of shoe characteristics on dynamic stability when walking on even and uneven surfaces in young and older people. Arch Phys Med Rehabil. 2008;89:1970–6. doi:10.1016/j.apmr.2008.02.031.

    Article  PubMed  Google Scholar 

  14. Michaels C, Beek P. The state of ecological psychology. Ecol Psychol. 1995;7:259–78.

    Article  Google Scholar 

  15. Gibson JJ. The senses considered as perceptual systems. Boston: Houghton Mifflin; 1966.

    Google Scholar 

  16. Kugler PN, Kelso JAS, Turvey MT. On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. In: Stelmach GE, Requin J, editors. Tutorials in motor behavior. Amsterdam: North-Holland; 1980. p. 3–47.

    Chapter  Google Scholar 

  17. Kugler PN, Kelso JAS, Turvey MT. On the control and co-ordination of naturally developing systems. In: Kelso JAS, Clark JE, editors. The development of movement control and co-ordination. New York: Wiley; 1982. p. 5–87.

    Google Scholar 

  18. Haken H. Synergetics, an introduction: non-equilibrium phase transitions and self-organization in physics, chemistry, and biology. 3rd ed. Berlin: Springer; 1983.

    Book  Google Scholar 

  19. Abernethy B, Sparrow WA. The rise and fall of dominant paradigms in motor behaviour research. In: Summers JJ, editor. Approaches to the study of motor control and learning. Amsterdam: Elsevier Science Publishers; 1992. p. 3–45.

    Chapter  Google Scholar 

  20. Mauerberg-deCastro E. Abordagens teóricas do comportamento motor. Conceitos dinâmicos aplicados aos processos adaptativos e à diversidade do movimento [Theoretical approaches in motor behavior. Dynamic concepts applied to adaptive processes and diversity of movement]. In: Guedes MG, editor. Aprendizagem motora [Motor learning]. Lisboa: Edições FMH; 2001. p. 105–25.

    Google Scholar 

  21. Thelen E, Smith L. A dynamic system approach to the development of cognition and action. Cambridge: MIT Press; 1994.

    Google Scholar 

  22. Van Emmerik REA, Van Wegen EEH. On the functional aspects of variability in postural control. Exerc Sport Sci Rev. 2002;30:178–83. doi:10.1097/00003677-200210000-00007.

    Google Scholar 

  23. Lipsitz LA, Goldberger AL. Loss of “complexity” aging. Potential applications of fractals and chaos theory to senescence. JAMA. 1992;267:1806–9.

    Article  CAS  PubMed  Google Scholar 

  24. Vaillancourt DE, Newell KM. Changing complexity in human behavior and physiology through aging and disease. Neurobiol Aging. 2002;23:1–11.

    Article  PubMed  Google Scholar 

  25. Ko JH, Newell KM. Aging and the complexity of center of pressure in static and dynamic postural tasks. Neurosci Lett. 2016;610:104–9. doi:10.1016/j.neulet.2015.10.069.

    Article  CAS  PubMed  Google Scholar 

  26. Sheldon JH. The effect of age on the control of sway. Geront Clin. 1963;5:129–38.

    Article  CAS  PubMed  Google Scholar 

  27. Horak F, MacPherson JM. Postural orientation and equilibrium. In: Rowell LB, Shepherd JT, editors. Handbook of physiology - section 12. Exercise: regulation and integration of multiple systems. New York: Oxford University Press; 1996. p. 255–92.

    Google Scholar 

  28. MacPherson JM, Horak FB. Posture. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Principles of neural science. New York: McGraw Hill; 2013. p. 935–59.

    Google Scholar 

  29. Winter DA. Anatomy, biomechanics and control of balance during standing and walking. Waterloo: Waterloo Biomechanics; 1995.

    Google Scholar 

  30. Maurer C, Peterka RJ. A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neurophysiol. 2005;93:189–200. doi:10.1152/jn.00221.2004.

    Article  PubMed  Google Scholar 

  31. Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K. Stiffness control of balance in quiet standing. J Neurophysiol. 1998;80:1211–21.

    CAS  PubMed  Google Scholar 

  32. Van Wegen EEH, Van Emmerik REA, Riccio GE. Postural orientation: age-related changes in variability and time-to-boundary. Hum Mov Sci. 2002;21:61–84.

    Article  PubMed  Google Scholar 

  33. Van Emmerik REA. Functional role of movement variability in movement coordination and disability. In: Davis WE, Broadhead GD, editors. Ecological task analysis and movement. Champaign: Human Kinetics; 2007. p. 25–52.

    Google Scholar 

  34. Carpenter MG, Murnaghan CD, Inglis JT. Shifting the balance: evidence of an exploratory role for postural sway. Neuroscience. 2010;171:196–204. doi:10.1016/j.neuroscience.2010.08.030.

    Article  CAS  PubMed  Google Scholar 

  35. Murnaghan CD, Horslen BC, Inglis JT, Carpenter MG. Exploratory behavior during stance persists with visual feedback. Neuroscience. 2011;195:54–9. doi:10.1016/j.neuroscience.2011.08.020.

    Article  CAS  PubMed  Google Scholar 

  36. Murnaghan CD, Squair JW, Chua R, Inglis JT, Carpenter MG. Are increases in COP variability observed when participants are provided explicit verbal cues prior to COM stabilization? Gait Posture. 2013;38:734–8. doi:10.1016/j.gaitpost.2013.03.012.

    Article  PubMed  Google Scholar 

  37. Collins JJ, Imhoff TT, Grigg P. Noise-enhanced tactile sensation. Nature. 1996;383:770.

    Article  CAS  PubMed  Google Scholar 

  38. Cordo P, Inglis JT, Verschueren S, Collins JJ, Merfeld DM, Rosenblum S, et al. Noise in human muscle spindles. Nature. 1996;383:769–70.

    Article  CAS  PubMed  Google Scholar 

  39. Magalhães FH, Kohn AF. Vibratory noise to the fingertip enhances balance improvement associated with light touch. Exp Brain Res. 2011;209:139–51. doi:10.1007/s00221-010-2529-3.

    Article  PubMed  Google Scholar 

  40. Manor B, Costa MD, Hu K, Newton E, Starobinets O, Kang HG, Peng CK, Novak V, Lipsitz LA. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J Appl Physiol. 2010;109:1786–91. doi:10.1152/japplphysiol.00390.2010.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Costa AAS, Manciopi PAR, Mauerberg-deCastro E, Moraes R. Haptic information provided by the “anchor system” reduces trunk sway acceleration in the frontal plane during tandem walking in older adults. Neurosci Lett. 2015;609:1–6. doi:10.1016/j.neulet.2015.10.004.

    Article  CAS  PubMed  Google Scholar 

  42. Mauerberg-deCastro E, Moraes R, Tavares CP, Figueiredo GA, Pacheco SM, Costa TDA. Haptic anchoring and human postural control. Psychol Neurosci. 2014;7:301–18. doi:10.3922/j.psns.2014.045.

    Article  Google Scholar 

  43. Johnson CB, Mihalko SL, Newell KM. Aging and the time needed to reacquire postural stability. JAPA. 2003;11:459–69.

    Article  Google Scholar 

  44. Cabe PA, Pittenger JB. Time-to-topple: haptic angular tau. Ecol Psychol. 1992;4:241–6.

    Article  Google Scholar 

  45. Freitas MBZ, Mauerberg-deCastro E, Moraes R. Intermittent use of an “anchor system” improves postural control in healthy older adults. Gait Posture. 2013;38:433–7. doi:10.1016/j.gaitpost.2013.01.004.

    Article  Google Scholar 

  46. Mauerberg-deCastro E, Angulo-Kinzler R. Locomotor patterns of individuals with Down syndrome: effects of environmental and task constraints. In: Elliot D, Chua R, Weeks D, editors. Perceptual-motor behavior in Down syndrome. Champaign: Human Kinetics; 2000. p. 71–98.

    Google Scholar 

  47. Halverson LE. Development of motor patterns in young children. Quest. 1966;6:44–53.

    Article  Google Scholar 

  48. Giladi N, Herman T, Reider II G, Gurevich T, Hausdorff JM. Clinical characteristics of elderly patients with a cautious gait of unknown origin. J Neurol. 2005;252:300–6.

    Article  CAS  PubMed  Google Scholar 

  49. Rinaldi NM, Moraes R. Older adults with history of falls are unable to perform walking and prehension movements simultaneously. Neuroscience. 2016;316:249–60. doi:10.1016/j.neuroscience.2015.12.037.

    Article  CAS  PubMed  Google Scholar 

  50. Cozzani M, Mauerberg-deCastro E. Estratégias adaptativas durante o andar na presença de obstáculos em idosos: impacto da institucionalização e da condição física [Adaptive strategies during walking over obstacles by elderly: effects of institutionalization and physical condition]. Rev Bras Educ Fis Esp. 2005;19:49–60.

    Google Scholar 

  51. Callisaya ML, Blizzard L, McGinley JL, Srikanth VK. Risk of falls in older people during fast-walking – The TASCOG study. Gait Posture. 2012;36:510–5. doi:10.1016/j.gaitpost.2012.05.003.

    Article  CAS  PubMed  Google Scholar 

  52. Saltzman EL, Kelso JAS. Skilled actions: a task-dynamic approach. Psychol Rev. 1987;94:84–106.

    Article  CAS  PubMed  Google Scholar 

  53. Delbaere K, Close JC, Brodaty H, Sachdev P, Lord SR. Determinants of disparities between perceived and physiological risk of falling among elderly people: cohort study. BMJ. 2010;341:c4165. doi:10.1136/bmj.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moraes R, Mauerberg-deCastro E. Relação entre percepção e ação durante os movimentos de sentar e levantar em indivíduos idosos [The relation between perception and action during the stand-to-sit and sit-to-stand movements in elderly individuals]. Psic Teor e Pesq. 2010;26:253–64. doi:10.1590/S0102-37722010000200007.

    Article  Google Scholar 

  55. Goldfield EC. Emergent forms. New York: Oxford University Press; 1995.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Debra Frances Campbell for her kind and patient revision of the English language of this manuscript. We would like to thank anonymous reviewers for their insightful review and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Moraes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Moraes, R., Mauerberg-deCastro, E. (2017). Complex Systems Approach to the Study of Posture and Locomotion in Older People. In: Barbieri, F., Vitório, R. (eds) Locomotion and Posture in Older Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-48980-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48980-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48979-7

  • Online ISBN: 978-3-319-48980-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics