Skip to main content

A Linear Programming Relaxation Based Approach for Generating Barrier Certificates of Hybrid Systems

  • Conference paper
  • First Online:
FM 2016: Formal Methods (FM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9995))

Included in the following conference series:

Abstract

This paper presents a linear programming (LP) relaxation based approach for generating polynomial barrier certificates for safety verification of semi-algebraic hybrid systems. The key idea is to introduce an LP relaxation to encode the set of nonnegativity constraints derived from the conditions of the associated barrier certificates and then resort to LP solvers to find the solutions. The most important benefit of the LP relaxation based approach is that it possesses a much lower computational complexity and hence can be solved very efficiently, which is demonstrated by the theoretical analysis on complexity as well as the experiment on a set of examples gathered from the literature. As far as we know, it is the first method that enables LP relaxation based polynomial barrier certificate generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi, A.A., Majumdar, A.: Dsos and sdsos optimization: Lp and socp-based alternatives to sum of squares optimization. In: 2014 48th Annual Conference on Information Sciences and Systems (CISS), pp. 1–5. IEEE (2014)

    Google Scholar 

  2. Alur, R.: Formal verification of hybrid systems. In: Proceedings of the International Conference on Embedded Software (EMSOFT), pp. 273–278. IEEE (2011)

    Google Scholar 

  3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. Embed. Comput. Syst. (TECS) 5(1), 152–199 (2006)

    Article  MATH  Google Scholar 

  5. Bouissou, O., Chapoutot, A., Djaballah, A., Kieffer, M.: Computation of parametric barrier functions for dynamical systems using interval analysis. In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 753–758. IEEE (2014)

    Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)

    Article  MATH  Google Scholar 

  8. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-linear hybrid systems. In: Proceedings of the 2012 IEEE 33rd Real-Time Systems Symposium (RTSS), pp. 183–192. IEEE (2012)

    Google Scholar 

  9. Dai, L., Gan, T., Xia, B., Zhan, N.: Barrier certificates revisited. To appear J. Symbolic Comput. (2016)

    Google Scholar 

  10. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM Sigsam Bull. 31(2), 2–9 (1997)

    Article  Google Scholar 

  11. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Proceedings of the 20th International Conference on Computer Aided Verification (CAV), pp. 190–203 (2008)

    Google Scholar 

  12. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, pp. 278–292. IEEE Computer Society (1996)

    Google Scholar 

  13. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based barrier certificate generation for safety verification of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_17

    Chapter  Google Scholar 

  14. Lasserre, J.B.: Polynomial programming: Lp-relaxations also converge. SIAM J. Optim. 15(2), 383–393 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. Form. Methods Syst. Des. 35(1), 98–120 (2009)

    Article  MATH  Google Scholar 

  16. Prajna, S., Jadbabaie, A., Pappas, G.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1429 (2007)

    Article  MathSciNet  Google Scholar 

  17. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24743-2_32

    Chapter  Google Scholar 

  18. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM Trans. Embed. Comput. Syst. 6(1), 573–589 (2007)

    Article  MATH  Google Scholar 

  19. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polynomial systems by computation of lyapunov-like functions. SIAM J. Control Optim. 48(7), 4377–4394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rodríguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid systems. In: Proceedings of the 8th ACM International Conference on Hybrid Systems: Computation and Control, pp. 590–605 (2005)

    Google Scholar 

  21. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed points. In: Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 221–230. ACM (2010)

    Google Scholar 

  22. Sankaranarayanan, S., Chen, X., Abrahám, E.: Lyapunov function synthesis using handelman representations. In: The 9th IFAC Symposium on Nonlinear Control Systems, pp. 576–581 (2013)

    Google Scholar 

  23. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid systems. Formal Methods Syst. Des. 32, 25–55 (2008)

    Article  MATH  Google Scholar 

  24. Sassi, M.A.B., Sankaranarayanan, S.: Stabilization of polynomial dynamical systems using linear programming based on bernstein polynomials. arXiv preprint arXiv:1501.04578 (2015)

  25. Sassi, M.A.B., Sankaranarayanan, S., Chen, X., Ábrahám, E.: Linear relaxations of polynomial positivity for polynomial lyapunov function synthesis. IMA J. Math. Control Inform., 1–34 (2015). doi:10.1093/imamci/dnv003

    Google Scholar 

  26. Sassi, M.A.B., Testylier, R., Dang, T., Girard, A.: Reachability analysis of polynomial systems using linear programming relaxations. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 137–151. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Sloth, C., Pappas, G.J., Wisniewski, R.: Compositional safety analysis using barrier certificates. In: Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control, pp. 15–24. ACM (2012)

    Google Scholar 

  28. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant generation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49122-5_13

    Chapter  Google Scholar 

  29. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(12), 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, pp. 329–336. ACM Press (2011)

    Google Scholar 

  31. Yang, Z., Wu, M., Lin, W.: Exact verification of hybrid systems based on bilinear SOS representation. ACM Trans. Embed. Comput. Syst. 14(1), 1–19 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This material is supported in part by Key Basic Research Program of China (Grant No. 2014CB340703), the National Natural Science Foundation of China (Grant Nos. 61321064, 61361136002, 11471209, 11571350, 61672435, 61561146394, 91318301 and 61602348), the Innovation Program of Shanghai Municipal Education Commission (Grant No. 14ZZ046), the project on the Integration of Industry, Education and Research of Jiangsu Province (Grant No. BY2014126-03), the project SWU116007 funded by Southwest University. We would like to thank anonymous reviewers for their very valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Yang, Z., Huang, C., Chen, X., Lin, W., Liu, Z. (2016). A Linear Programming Relaxation Based Approach for Generating Barrier Certificates of Hybrid Systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds) FM 2016: Formal Methods. FM 2016. Lecture Notes in Computer Science(), vol 9995. Springer, Cham. https://doi.org/10.1007/978-3-319-48989-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48989-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48988-9

  • Online ISBN: 978-3-319-48989-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics