Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMAGNET))

  • 462 Accesses

Abstract

In order to evaluate the dipole moment, the finite-field method [see Eq. (2.3.2)] described by Cohen and Roothaan in (J Chem Phys 43(10):S34–S39, 1) is often employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.D. Cohen, C.C.J. Roothaan, Electric dipole polarizability of atoms by the Hartree-Fock method. I. Theory of closed-shell systems. J. Chem. Phys. 43(10), S34–S39 (1965)

    Article  CAS  Google Scholar 

  2. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, 2009)

    Google Scholar 

  3. H.-J. Werner, P.J. Knowles, R. Lindh, F.R. Manby, M. Schütz, and others MOLPRO, version 2009.1, a package of ab initio programs, see http://www.molpro.net

  4. G. Maroulis, A systematic study of basis set, electron correlation, and geometry effects on the electric multipole moments, polarizability, and hyperpolarizability of HCl. J. Chem. Phys. 108(13), 5432–5448 (1998)

    Article  CAS  Google Scholar 

  5. B. Linder, R.A. Kromhout, Van der Waals induced dipoles. J. Chem. Phys. 84(5), 2753–2760 (1986)

    Article  CAS  Google Scholar 

  6. P.W. Fowler, Dispersion dipoles, quadrupoles and electric-field gradients. Chem. Phys. 143, 447–457 (1990)

    Article  CAS  Google Scholar 

  7. X. Li, M.H. Champagne, K.L.C. Hunt, Long-range, collision-induced dipoles of Td-D∞h molecule pairs: theory and numerical results for CH4 or CF4 interacting with H2, N2, CO2, or CS2. J. Chem. Phys. 109(19), 8416–8425 (1998)

    Article  Google Scholar 

  8. J.E. Bohr, K.L.C. Hunt, Dipoles induced by van der Waals interactions during collisions of atoms with heteroatoms or with centrosymmetric linear molecules. J. Chem. Phys. 86(10), 5441–5448 (1987)

    Article  CAS  Google Scholar 

  9. M.H. Champagne, X. Li, K.L.C. Hunt, Nonadditive three-body polarizabilities of molecules interacting at long range: theory and numerical results for the inert gases, H2, N2, CO2, and CH4. J. Chem. Phys. 112(4), 1893–1906 (2000)

    Article  CAS  Google Scholar 

  10. A. Unsöld, Quantentheorie des Wasserstoffmolekülions und der Born-Landéschen Abstoβungskräfte. Z. Physik. 43, 563–574 (1927)

    Article  Google Scholar 

  11. B.M. Smirnov, in Asymptotic Methods in Atomic Collisions (Atompress, Moscow, 1973, in Russian)

    Google Scholar 

  12. B.M. Smirnov, E.E. Nikitin, in Atomic and Molecular Processes (Nauka, Moscow, 1988, in Russian)

    Google Scholar 

  13. N. Zvereva-Loëte, YuN Kalugina, V. Boudon, M.A. Buldakov, V.N. Cherepanov, Dipole moment surface of the van der Waals complex CH4–N2. J. Chem. Phys. 133, 184302 (2010)

    Article  Google Scholar 

  14. D. Xenides, A. Hantzis, G. Maroulis, Comparison of high-level post-Hartree–Fock and DFT methods on the calculation of interaction-induced electric properties of Kr–He. Chem. Phys. 382, 80–87 (2011)

    Article  CAS  Google Scholar 

  15. A. Haskopoulos, G. Maroulis, Interaction dipole moment in Rg–Xe (Rg=He, Ne, Ar, and Kr) heterodiatoms from conventional ab initio and density functional theory calculations. J. Math. Chem. 40(3), 233–242 (2006)

    Article  CAS  Google Scholar 

  16. L. Galatry, T. Gharbi, The long-range dipole moment of two interacting spherical systems. Chem. Phys. Lett. 75(3), 427–433 (1980)

    Article  CAS  Google Scholar 

  17. D.P. Craig, Elementaty derivation of long-range moments of two coupled centrosymmetric systems. Chem. Phys. Lett. 80(1), 14–17 (1981)

    Article  CAS  Google Scholar 

  18. W.B. Brown, D.M. Whisnant, Interatomic dispersion dipole. Mol. Phys. 26(5), 1105–1119 (1973)

    Article  Google Scholar 

  19. D.M. Whisnant, W.B. Brown, Interatomic dispersion dipole. Mol. Phys. 25(6), 1385–1403 (1973)

    Article  Google Scholar 

  20. J. Mahanty, C.K. Majumdar, Exchange-induced dipole moments in atom pairs. Phys. Rev. A 26(5), 2334–2337 (1982)

    Article  CAS  Google Scholar 

  21. P. Karamanis, G. Maroulis, How Important are high-level ab initio treatments for the interaction dipole moment and polarizability of HeNe? Comput. Lett. (CoLe) 1(3), 117 (2005)

    Article  CAS  Google Scholar 

  22. J. Goodisman, Dipole-moment function for diatomic molecules. J. Chem. Phys. 38(11), 2597–2599 (1963)

    Article  CAS  Google Scholar 

  23. M.A. Buldakov, V.N. Cherepanov, The semiempirical dipole moment functions of the molecules HX (X=F, Cl, Br, I, O), CO and NO. J. Phys. B: At. Mol. Opt. Phys. 37(19), 3973–3986 (2004)

    Article  CAS  Google Scholar 

  24. R.J. Hinde, Interaction-induced dipole moment of Ar-H2 dimer: dependence on the H2 bond length. J. Chem. Phys. 124, 154309 (2006)

    Article  Google Scholar 

  25. V.P. Bulychev, K.M. Bulanin, M.O. Bulanin, Theoretical study of the Spectral and structural parameters of van der Waals complexes of the Li+ cation with the H2, D2, and T2 isotopomers of the hydrogen molecule. Opt. Spectrosc. 96(2), 205–216 (2004)

    Article  CAS  Google Scholar 

  26. F. Wang, F.R.W. McCourt, R.J. Le Roy, Dipole moment surfaces and the mid- and far-IR spectra of N2-Ar. J. Chem. Phys. 113(1), 98–106 (2000)

    Article  CAS  Google Scholar 

  27. F. Wang, F.R.W. McCourt, R.J. Le Roy, Use of simulated infrared spectra to test N2-Ar pair potentials and dipole moment surfaces. Molec. Phys. 88(3), 821–840 (1996)

    Article  CAS  Google Scholar 

  28. A.L. Cooksy, M.J. Elrod, R.J. Saykally, W. Klemperer, Dipole moment analysis of excited van der Waals vibrational states of ArH35Cl. J. Chem. Phys. 99(5), 3200–3204 (1993)

    Article  CAS  Google Scholar 

  29. A.G. Ayllon, J. Santamaria, S. Miller, J. Tennyson, Calculated spectra for N2-Ar van der Waals complex. Molec. Phys. 71(5), 1043–1054 (1990)

    Article  Google Scholar 

  30. W. Meyer, L. Frommhold, Collision-induced rototranslational spectra of H2-He from an accurate ab initio dipole moment surface. Phys. Rev. A 34(4), 2771–2779 (1986)

    Article  CAS  Google Scholar 

  31. Y.N. Kalugina, S.E. Lokshtanov, V.N. Cherepanov, A.A. Vigasin, Ab initio 3D potential energy and dipole moment surfaces for the CH4–Ar complex: collision-induced intensity and dimer content. J. Chem. Phys. 144(5), 054304 (2016)

    Article  Google Scholar 

  32. L. Frommhold, in Collision-Induced Absorption in Gases (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  33. Weakly interacting molecular pairs: Unconventional absorbers of radiation in the atmosphere. NATO Science Series. IV. Earth and Environmental Sciences, vol. 27, eds. by C. Camy-Preyt, A. Vigasin; A. Vigasin and Z. Slanina, Molecular Complexes in Earth’s Planetary, Cometary and Interstellar Atmospheres (World Scientific Publishing, 1998)

    Google Scholar 

  34. M. Afshari, M. Dehghany, J. Norooz Oliaee, N. Moazzen-Ahmadi, Infrared spectra of the OCS–N2O complex and observation of a new isomer. Chem. Phys. Lett. 489(1–3), 30 (2010)

    Article  CAS  Google Scholar 

  35. A. Baranowska, B. Fernandez, A. Rizzo, B. Jansik, The CO–Ne van der Waals complex: ab initio intermolecular potential energy, interaction induced electric dipole moment and polarizability surfaces, and second viral coefficients. Phys. Chem. Chem. Phys. 11, 9871 (2009)

    Article  CAS  Google Scholar 

  36. T. Bancewicz, G. Maroulis, Rotationally adapted studies of ab initio–computed collision-induced hyperpolarizabilities: The H2-Ar pair. Phys. Rev A 79, 042704 (2009)

    Article  Google Scholar 

  37. X. Li, K.L.C. Hunt, F. Wang, M. Abel, L. Frommhold, Collision-induced infrared absorption by molecular hydrogen pairs at thousands of Kelvin. Int. J. Spectrosc. 2010, 371201 (2009)

    Google Scholar 

  38. K. Didriche, C. Lauzin, P. Macko, M. Herman, W.J. Lafferty, Observation of the C2H2−N2O van der Waals complex in the overtone range using CW-CRDS. Chem. Phys. Lett. 469(1–3), 35 (2009)

    Article  CAS  Google Scholar 

  39. P. Macko, C. Lauzin, M. Herman, High resolution spectroscopy of the 2CH band in the 12C2H2–Ar van der Waals complex. Chem. Phys. Lett. 445(4–6), 113 (2007)

    Article  CAS  Google Scholar 

  40. Q. Wen, W. Jäger, Microwave and ab initio studies of the Xe–CH4 van der Waals complex. J. Chem. Phys. 124(1), 014301 (2006)

    Article  Google Scholar 

  41. W.C. Topic, W. Jäger, The weakly bound He–HCCCN complex: high-resolution microwave spectra and intermolecular potential-energy surface. J. Chem. Phys. 123(6), 064303 (2005)

    Article  Google Scholar 

  42. W.M. Fawzy, G. Kerenskaya, M.C. Heaven, Experimental detection and theoretical characterization of the H2–NH(X) van der Waals complex. J. Chem. Phys. 122(14), 144318 (2005)

    Article  Google Scholar 

  43. Y. Liu, W. Jäger, Microwave and ab initio studies of rare gas–methane van der Waals complexes. J. Chem. Phys. 120(19), 9047 (2004)

    Article  CAS  Google Scholar 

  44. Y. Liu, W. Jäger, Microwave investigation of the CO-CH4 van der Waals complex. J. Chem. Phys. 121(13), 6240 (2004)

    Article  CAS  Google Scholar 

  45. F. Raulin, D. Mourey, G. Toupance, Organic syntheses from CH4-N2 atmospheres: implications for Titan. Orig. Life. 12(3), 267–279 (1982)

    Article  CAS  Google Scholar 

  46. A. Coustenis, F.W. Taylor, in Titan: Exploring an Earthlike World (World Scientific Publishing Co. Pte. Ltd., 2008)

    Google Scholar 

  47. R. Courtin, The spectrum of titan in the far-infrared and microwave regions. ICARUS 51(3), 466–475 (1982)

    Article  CAS  Google Scholar 

  48. R. Courtin, Pressure-induced absorption coefficients for radiative transfer calculations in Titan’s atmosphere. ICARUS 75(2), 245–254 (1988)

    Article  CAS  Google Scholar 

  49. O.B. Toon, C.P. McKay, R. Courtin, T.P. Ackerman, Methane rain on Titan. ICARUS 75(2), 255–284 (1988)

    Article  CAS  Google Scholar 

  50. G.F. Lindal, G.E. Wood, H.B. Hotz, D.N. Sweetnam, V.R. Eshleman, G.L. Tyler, The atmosphere of Titan: an analysis of the Voyager 1 radio occultation measurements. ICARUS 53(2), 348–363 (1983)

    Article  CAS  Google Scholar 

  51. W. Reid Thompson, J.A. Zollweg, D.H. Gabis, Vapor-liquid equilibrium thermodynamics of N2+ CH4: model and Titan applications. ICARUS 97(2), 187–199 (1992)

    Article  Google Scholar 

  52. A. Borysow, C. Tang, Far infrared CIA spectra of N2-CH4 pairs for modeling of Titan’s atmosphere. ICARUS 105(1), 175–183 (1993)

    Article  CAS  Google Scholar 

  53. R. Courtin, D. Gautier, C.P. McKay, Titan’s thermal emission spectrum: reanalysis of the voyager infrared measurements. ICARUS 114(1), 144–162 (1995)

    Article  CAS  Google Scholar 

  54. C.P. McKay, Elemental composition, solubility, and optical properties of Titan’s organic haze Planet. Space Sci. 44(8), 741–747 (1996)

    Article  CAS  Google Scholar 

  55. R.E. Samuelson, N.R. Nath, A. Borysow, Gaseous abundances and methane supersaturation in Titan’s troposphere planet. Space Sci. 45(8), 959–980 (1997)

    Article  CAS  Google Scholar 

  56. F.M. Flasar, R.K. Achterberg, B.J. Conrath, P.J. Gierasch, V.G. Kunde, C.A. Nixon, G.L. Bjoraker, D.E. Jennings, P.N. Romani, A.A. Simon-Miller, B. Bezard, A. Coustenis, P.G.J. Irwin, N.A. Teanby, J. Brasunas, J.C. Pearl, M.E. Segura, R.C. Carlson, A. Mamoutkine, P.J. Schinder, A. Barucci, R. Courtin, T. Fouchet, D. Gautier, E. Lellouch, A. Marten, R. Prange, S. Vinatier, D.F. Strobel, S.B. Calcutt, P.L. Read, F.W. Taylor, N. Bowles, R.E. Samuelson, G.S. Orton, L.J. Spilker, T.C. Owen, J.R. Spencer, M.R. Showalter, C. Ferrari, M.M. Abbas, F. Raulin, S. Edgington, P. Ade, E.H. Wishnow, Titan’s atmospheric temperatures, winds, and composition. Science 308, 975–978 (2005)

    Article  CAS  Google Scholar 

  57. S.J. Kim, T.R. Geballe, K.S. Noll, R. Courtin, Clouds, haze, and CH4, CH3D, HCN, and C2H2 in the atmosphere of Titan probed via 3 μm spectroscopy. ICARUS 173(2), 522–532 (2005)

    Article  CAS  Google Scholar 

  58. A. Coustenis, R.K. Achterberg, B.J. Conrath, D.E. Jennings, A. Marten, D. Gautier, C.A. Nixon, F.M. Flasar, N.A. Teanby, B. Bzard, R.E. Samuelson, R.C. Carlson, E. Lellouch, G.L. Bjoraker, P.N. Romani, F.W. Taylor, P.G.J. Irwin, T. Fouchet, A. Hubert, G.S. Orton, V.G. Kunde, S. Vinatier, J. Mondellini, M.M. Abbas, R. Courtin, The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. ICARUS 189(1), 35–62 (2007)

    Article  CAS  Google Scholar 

  59. H. Seo, S.J. Kim, J.H. Kim, T.R. Geballe, R. Courtin, L.R. Brown, Titan at 3 microns: newly identified spectral features and an improved analysis of haze opacity. ICARUS 199(2), 449–457 (2009)

    Article  Google Scholar 

  60. D.E. Jennings, F.M. Flasar, V.G. Kunde, R.E. Samuelson, J.C. Pearl, C.A. Nixon, R.C. Carlson, A.A. Mamoutkine, J.C. Brasunas, E. Guandique, R.K. Achterberg, G.L. Bjoraker, P.N. Romani, M.E. Segura, S.A. Albright, M.H. Elliott, J.S. Tingley, S. Calcutt, A. Coustenis, R. Courtin, Titan’s surface brightness temperatures. Astrophys. J. 691(1), L103–L105 (2009)

    Article  CAS  Google Scholar 

  61. H. Schindler, R. Vogelsang, V. Staemmler, M.A. Siddiqi, P. Svejda, Ab initio intermolecular potentials of methane, nitrogen methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures. Mol. Phys. 80(6), 1413 (1993)

    Article  CAS  Google Scholar 

  62. M. Shadman, S. Yeganegi, F. Ziaie, Ab initio interaction potential of methane and nitrogen. Chem. Phys. Lett. 467, 237 (2009)

    Article  CAS  Google Scholar 

  63. Y.N. Kalugina, V.N. Cherepanov, M.A. Buldakov, N. Zvereva-Loëte, V. Boudon, Theoretical investigation of the potential energy surface of the van der Waals complex CH4–N2. J. Chem. Phys. 131, 134304 (2009)

    Article  Google Scholar 

  64. M.A. Buldakov, V.N. Cherepanov, YuN Kalugina, N. Zvereva-Loëte, V. Boudon, Static polarizability surfaces of the van der Waals complex CH4–N2. J. Chem. Phys. 132(16), 164304 (2010)

    Article  Google Scholar 

  65. M. Buser, L. Frommhold, M. Gustafsson, M. Moraldi, M.H. Champagne, K.L.C. Hunt, Far-infrared absorption by collisionally interacting nitrogen and methane molecules. J. Chem. Phys. 121(6), 2617 (2004)

    Article  CAS  Google Scholar 

  66. M. Buser, L. Frommhold, Infrared absorption by collisional CH4-X pairs, with X=He, H2, or N2. J. Chem. Phys. 122(2), 024301 (2005)

    Article  Google Scholar 

  67. I.R. Dagg, A. Anderson, S. Yan, W. Smith, C.G. Joslin, L.A.A. Read, Collision-induced absorption in gaseous mixtures of nitrogen and methane. Can. J. Phys. 64(11), 1467–1474 (1986)

    Article  CAS  Google Scholar 

  68. G. Birnbaum, A. Borysow, A. Buechele, Collision-induced absorption in mixtures of symmetrical linear and tetrahedral molecules: methane-nitrogen. J. Chem. Phys. 99(5), 3234 (1993)

    Article  CAS  Google Scholar 

  69. D.J. Margoliash, W.J. Meath, Pseudospectral dipole oscillator strength distributions and some related two body interactions coefficients for H, He, Lim N, O, H2, N2, O2, NO, N2, H2O, NH3 and CH4. J. Chem. Phys. 68(4), 1426 (1978)

    Article  CAS  Google Scholar 

  70. G. Maroulis, Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2. J. Chem. Phys. 118(6), 2673 (2003)

    Article  CAS  Google Scholar 

  71. G. Maroulis, Electric dipole hyperpolarizability and quadrupole polarizability of methane from finite-field coupled cluster and fourth-order many-body perturbation theory calculations. Chem. Phys. Lett. 226, 420 (1994)

    Article  CAS  Google Scholar 

  72. G. Maroulis, Dipole–quadrupole and dipole–octopole polarizability for CH4 and CF4. J. Chem. Phys. 105(18), 8467 (1996)

    Article  CAS  Google Scholar 

  73. C. Huiszoon, Ab initio calculations of multipole moments, polarizabilities and isotropic long-range coefficients for dimethylether, methanol, methane, and water. Mol. Phys. 58, 865 (1986)

    Article  CAS  Google Scholar 

  74. M. Hashimoto, T. Isobe, CNDO/2 calculation of the valence electron contribution to the intermolecular potential of some ground state closed shell molecules. Bull. Chem. Soc. Jpn. 46(8), 2581–2582 (1973)

    Article  CAS  Google Scholar 

  75. M. Hashimoto, T. Isobe, The INDO and CNDO/2 SCF LCAO MO calculation of intermolecular forces and their pairwise additivity. Bull. Chem. Soc. Jpn. 47(1), 40–44 (1974)

    Article  CAS  Google Scholar 

  76. K. Suzuki, K. Iguchi, The intermolecular potential of the ethylene dimer. J. Chem. Phys. 75(9), 779–784 (1978)

    CAS  Google Scholar 

  77. BKh Khalbaev, I.A. Misurkin, Intermolecular interactions in the ethylene dimer according to perturbation theory in the CNDO/2 approximation with a new formula for the resonance integral. Theor. Exp. Chem. 20(4), 365–372 (1984)

    Article  Google Scholar 

  78. BKh Khalbaev, I.A. Misurkin, Investigation of the intermolecular interaction in the ethylene dimer by a modified CNDO method. Theor. Exp. Chem. 21(5), 505–512 (1985)

    Article  Google Scholar 

  79. V. Brenner, Ph Millie, Intermolecular interactions: basis set and intermolecular correlation effects on semiempirical methods. Application to (C2H2)2, (C2H2)3 and (C2H4)2. Z. Phys. D 30(4), 327–340 (1994)

    Article  CAS  Google Scholar 

  80. P.E.S. Wormer, A. van der Avoird, Ab initio valence-bond calculations of the van der Waals interactions between π systems: the ethylene dimer. J. Chem. Phys. 62(8), 3326–3339 (1975)

    Article  CAS  Google Scholar 

  81. T. Wasiutynski, A. van der Avoird, R.M. Berns, Lattice dynamics of the ethylene crystal with interaction potentials from ab initio calculations. J. Chem. Phys. 69(12), 5288–5300 (1978)

    Article  CAS  Google Scholar 

  82. T. Luty, A. van der Avoird, R.M. Berns, T. Wasiutynski, Dynamical and optical properties of the ethylene crystal: self-consistent phonon calculations using an ab initio intermolecular potential. J. Chem. Phys. 75(3), 1451–1458 (1981)

    Article  CAS  Google Scholar 

  83. E.J.P. Malar, A.K. Chandra, Intermolecular potentials in the dimer, the excimers, and the dimer ions of ethylene. J. Phys. Chem. 85(15), 2190–2194 (1981)

    Article  CAS  Google Scholar 

  84. K. Suzuki, K. Iguchi, Ab initio intermolecular potential of the ethylene dimer. J. Chem. Phys. 77(9), 4594–4603 (1982)

    Article  CAS  Google Scholar 

  85. I.L. Alberts, T.W. Rowlands, N.C. Handy, Stationary points on the potential energy surfaces of (C2H2)2, (C2H2)3 and (C2H4)2. J. Chem. Phys. 88(6), 3811–3816 (1988)

    Article  CAS  Google Scholar 

  86. S. Tsuzuki, K. Tanabe, Nonbonding interaction potential of ethylene dimer obtained from ab initio molecular orbital calculations: Prediction of a D 2d structure. J. Phys. Chem. 96(26), 10804–10808 (1992)

    Article  CAS  Google Scholar 

  87. E. Rytter, D.M. Gruen, Infrared spectra of matrix isolated and solid ethylene. Formation of ethylene dimers. Spectrochim. Acta A 35(3), 199–207 (1979)

    Google Scholar 

  88. M.C. Chan, P.A. Block, R.E. Miller, Structure of the ethylene dimer from rotationally resolved near-infrared spectroscopy: a quadruple hydrogen bond. J. Chem. Phys. 102(10), 3993–3999 (1995)

    Article  CAS  Google Scholar 

  89. S. Tsuzuki, T. Uchimaru, K. Tanabe, Intermolecular interaction potentials of methane and ethylene dimers calculated with the Møller-Plesset, coupled cluster and density functional methods. Chem. Phys. Lett. 287(1–2), 202–208 (1998)

    Article  CAS  Google Scholar 

  90. S. Tsuzuki, T. Uchimaru, K. Matsumura, M. Mikami, K. Tanabe, Effects of the higher electron correlation correction on the calculated intermolecular interaction energies of benzene and naphthalene dimers: comparison between MP2 and CCSD(T) calculations. Chem. Phys. Lett. 319(5–6), 547–554 (2000)

    Article  CAS  Google Scholar 

  91. S. Tsuzuki, T. Uchimaru, M. Mikami, K. Tanabe, New medium-size basis sets to evaluate the dispersion interaction of hydrocarbon molecules. J. Phys. Chem. A 102(12), 2091–2094 (1998)

    Article  CAS  Google Scholar 

  92. P. Jurečka, J. Šponer, J. Černý, P. Hobza, Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys. Chem. Chem. Phys. 8(17), 1985–1993 (2006)

    Article  Google Scholar 

  93. J. Antony, S. Grimme, Is spin-component scaled second-order Møller-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules? J. Phys. Chem. A 111(22), 4862–4868 (2007)

    Article  CAS  Google Scholar 

  94. R.A. King, On the accuracy of spin-component-scaled perturbation theory (SCS-MP2) for the potential energy surface of the ethylene dimer. Mol. Phys. 107(8–12), 789–795 (2009)

    Article  CAS  Google Scholar 

  95. F. Mulder, C. Huiszoon, The dimer interaction and lattice energy of ethylene and pyrazine in the multipole expansion; a comparison with atom-atom potentials. Mol. Phys. 34(5), 1215–1235 (1977)

    Article  CAS  Google Scholar 

  96. F. Mulder, M. van Hemert, P.E.S. Wormer, A. van der Avoird, Ab initio studies of long range interactions between ethylene molecules in the multipole expansion. Theor. Chim. Acta 46(1), 39–62 (1977)

    Article  CAS  Google Scholar 

  97. P.E.S. Wormer, F. Mulder, A. van der Avoird, Quantum theoretical calculations of van der Waals interactions between molecules. Anisotropic long range interactions. Int. J. Quant. Chem. 11(6), 959–970 (1977)

    Google Scholar 

  98. P. Coulon, R. Luyckx, H.N.W. Lekkerkerker, Approximate calculation of the dynamic polarizabilities and dispersion interaction for ethylene molecules. J. Chem. Soc., Faraday Trans. 2 77(1), 201–207 (1981)

    Google Scholar 

  99. R. Ahlrichs, S. Brode, U. Buck, M. DeKieviet, C. Lauenstein, A. Rudolph, B. Schmidt, The structure of C2H4 clusters from theoretical interaction potentials and vibrational predissociation data. Z. Phys. D 15(4), 341–351 (1990)

    Article  CAS  Google Scholar 

  100. YuN Kalugina, V.N. Cherepanov, M.A. Buldakov, N. Zvereva-Loëte, Vincent Boudon, Theoretical investigation of the ethylene dimer: interaction energy and dipole moment. J. Comput. Chem. 33(3), 319–330 (2012)

    Article  CAS  Google Scholar 

  101. C.G. Gray, K.E. Gubbins, I.R. Dagg, L.A.A. Read, Determination of the quadrupole moment tensor of ethylene by collision-induced absorption. Chem. Phys. Lett. 73(2), 278–282 (1980)

    Article  CAS  Google Scholar 

  102. I.R. Dagg, L.A.A. Read, B. Andrews, Collision-induced absorption in ethylene in the microwave and far-infrared regions. Can. J. Phys. 59(1), 57–65 (1981)

    Article  CAS  Google Scholar 

  103. I.R. Dagg, L.A.A. Read, B. Andrews, Collision-induced absorption in the far infrared region in ethylene—rare gas mixtures. Can. J. Phys. 60(10), 1431–1441 (1982)

    Article  CAS  Google Scholar 

  104. W.C. Pringle, R.C. Cohen, S.M. Jacobs, Analysis of collision induced far infrared spectrum of ethylene. Mol. Phys. 62(3), 661–668 (1987)

    Article  CAS  Google Scholar 

  105. A. Kumar, B.L. Jhanwar, W. Meath, Can. J. Chem. 85, 724 (2007)

    Article  CAS  Google Scholar 

  106. A.D. McLean, M. Yoshimine, J. Chem. Phys. 47, 1927 (1967)

    Article  CAS  Google Scholar 

  107. P. Karamanis, G. Maroulis, Electric quadrupole and hexadecapole moments for X2C=CX2, X=H, F, Cl, Br, and I. Int. J. Quant. Chem. 90, 483–490 (2002)

    Article  CAS  Google Scholar 

  108. J.L. Duncan, I.J. Wright, D. van Leberghe, Ground state rotational constants of H2CCD2 and C2D4 and geometry of ethylene. J. Mol. Spectrosc. 42, 463–477 (1972)

    Article  CAS  Google Scholar 

  109. G. Maroulis, A study of basis set and electron correlation effects in the ab initio calculation of the electric dipole hyperpolarizability of ethene (H2C=CH2). J. Chem. Phys. 97(6), 4188–4194 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor N. Cherepanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Cherepanov, V.N., Kalugina, Y.N., Buldakov, M.A. (2017). Interaction-induced Dipole Moment. In: Interaction-induced Electric Properties of van der Waals Complexes. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-49032-8_3

Download citation

Publish with us

Policies and ethics