Skip to main content

Practical Signature Scheme from \(\varGamma \)-Protocol

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10060))

Abstract

Digital signature is fundamental to information security. Today many signature schemes based on discrete logarithm problem (DLP), including Schnorr, DSA and their variants, have been standardized and widely used. In this work, we review and make a comparative study on the DLP-based schemes included in some standard documents such as ISO/IEC 14888-3 and ISO-11889. We find some disadvantages of these standardized schemes in efficiency, security and usage, which shows that further improvement on digital signatures is still possible.

In this work, we present a new \(\varGamma \)-protocol (an extension of Sigma-protocol), and transform this protocol into a concrete signature scheme (referred to as EC-CDSA) based on elliptic curve groups. We show that our EC-CDSA scheme combines, in essence, the advantages of the current standardized signature schemes based on DLP, while saving from or alleviating the disadvantages of them all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biehl, I., Buchmann, J., Hamdy, S., Meyer, A.: A signature scheme based on the intractability of computing roots. Des. Codes Crypt. 25(3), 223–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brown, D.R.: Generic groups, collision resistance, and ecdsa. Des. Codes Crypt. 35(1), 119–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cramer, R.: Modular design of secure yet practical cryptographic protocol. Ph.D. thesis, University of Amsterdam (1996)

    Google Scholar 

  4. Hess, E., Schafheutle, M., Serf, P., et al.: The digital signature scheme ECGDSA. Citeseer (2006)

    Google Scholar 

  5. Horster, P., Petersen, H., Michels, M.: Meta-ELGamal signature schemes. In: Proceedings of the 2nd ACM Conference on Computer and communications security, pp. 96–107. ACM (1994)

    Google Scholar 

  6. ISO. Information technology – security techniques – digital signatures with appendix – part 3: discrete logarithm based mechanisms. ISO, International Organization for Standardization, Geneva, Switzerland (2006)

    Google Scholar 

  7. ISO. Information technology – trusted platform module library. ISO, International Organization for Standardization, Geneva, Switzerland (2015)

    Google Scholar 

  8. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

    Article  Google Scholar 

  9. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P.: Internet Key Exchange Protocol Version 2 (IKEv2). RFC 5996 (Proposed Standard), September 2010. Obsoleted by RFC 7296, updated by RFCs 5998, 6989

    Google Scholar 

  10. Koblitz, N., Menezes, A.: Another look at generic groups. Adv. Math. Commun. 1(1), 13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kravitz, D.: Digital signature algorithm, July 27 1993. US Patent 5,231,668

    Google Scholar 

  12. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_24

    Chapter  Google Scholar 

  13. Lim, C.H., Lee, P.J.: The Korean certificate-based digital signature algorithm. Comput. Electr. Eng. 25(4), 249–265 (1999)

    Article  Google Scholar 

  14. Liu, M., Chen, J., Li, H.: Partially known nonces and fault injection attacks on SM2 signature algorithm. In: Lin, D., Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS, vol. 8567, pp. 343–358. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12087-4_22

    Google Scholar 

  15. Office of State Commercial Cryptography Administration. Public key cryptographic algorithm SM2 based on elliptic curves (in Chinese) (2010). http://www.oscca.gov.cn/UpFile/2010122214822692.pdf

  16. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Silverman, J.H., Suzuki, J.: Elliptic curve discrete logarithms and the index calculus. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 110–125. Springer, Heidelberg (1998). doi:10.1007/3-540-49649-1_10

    Chapter  Google Scholar 

  18. Yao, A.C.-C., Zhao, Y.: Online/offline signatures for low-power devices. IEEE Trans. Inf. Forensics Secur. 8(2), 283–294 (2013)

    Article  Google Scholar 

  19. Zhang, Z., Yang, K., Zhang, J., Chen, C.: Security of the SM2 signature scheme against generalized key substitution attacks. In: Chen, L., Matsuo, S. (eds.) SSR 2015. LNCS, vol. 9497, pp. 140–153. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27152-1_7

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported in part by NSFC (Grant Nos. 61472084, 61272012, U1536205) and Shanghai Innovation Action Project No. 16DZ1100200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhoujun Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ma, Z., Yang, L., Zhao, Y. (2016). Practical Signature Scheme from \(\varGamma \)-Protocol. In: Bao, F., Chen, L., Deng, R., Wang, G. (eds) Information Security Practice and Experience. ISPEC 2016. Lecture Notes in Computer Science(), vol 10060. Springer, Cham. https://doi.org/10.1007/978-3-319-49151-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49151-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49150-9

  • Online ISBN: 978-3-319-49151-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics