Skip to main content

New Developments in Free Fatty Acids and Lysophospholipids: Decoding the Role of Phospholipases in Exocytosis

  • Chapter
  • First Online:
Lipidomics of Stem Cells

Abstract

This review critically assesses the recent advances in MS-based lipidomics and their current and future contribution in our understanding of the essential function of exocytosis. Exocytosis is a complex process during which the membranes of two compartments fuse. In neurons, neuroexocytosis involves the calcium-dependent release of neurotransmitter-containing synaptic vesicles with the plasma membrane at the level of the presynaptic active zone. Exocytosis is also involved in a myriad of intra- and intercellular communication processes including exosome release whose function has been widely investigated recently. Our understanding of exocytosis has been hampered by the lack of holistic information on the change in lipid composition occurring as a result of the action of various enzymes such as phospholipases. These changes are of paramount importance as they can influence both fusogenicity and membrane fluidity. This review assesses the recent advances in lipid MS and examines how they have helped deconvolve the structural and functional complexities of brain lipids, applied to exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid

Ca2+ :

Calcium

DHA:

Docosahexaenoic acid

ER:

Endoplasmic reticulum

ESI:

Electrospray ionisation

FFAs:

Free fatty acids

GC/MS:

Gas chromatography/mass spectrometry

GPCRs:

G-protein coupled receptors

LC/MS:

Liquid chromatography mass spectrometry

LPA:

Lysophosphatidic acid

LPAAT:

Lysophosphatidic acid acyl transferase

LPC:

LysophosphatidylcholineLPLLysophospholipids

MS:

Mass spectrometry

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PH:

Pleckstrin homology domain

PIPs:

Phosphatidylinositol phosphates

PKC:

Protein kinase C

PL:

Phospholipase

PtdIns(4,5)P2 :

Phosphatidylinositol (4,5) bisphosphate

SM:

Sphingomyelin

SNARE:

Soluble N-ethylmaleimide-sensitive factor activating protein receptor

References

  1. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kobayashi T, Yamaji-Hasegawa A, Kiyokawa E (2001) Lipid domains in the endocytic pathway. Semin Cell Dev Biol 12(2):173–182

    Article  CAS  PubMed  Google Scholar 

  3. Haucke V, Di Paolo G (2007) Lipids and lipid modifications in the regulation of membrane traffic. Curr Opin Cell Biol 19(4):426–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iaea DB, Maxfield FR (2015) Cholesterol trafficking and distribution. Essays Biochem 57:43–55

    Article  PubMed  Google Scholar 

  5. Xu P et al (2013) Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport. J Cell Biol 202(6):875–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11(8):593–598

    Article  CAS  PubMed  Google Scholar 

  7. Paila YD, Tiwari S, Chattopadhyay A (2009) Are specific nonannular cholesterol binding sites present in G-protein coupled receptors? Biochim Biophys Acta 1788(2):295–302

    Article  CAS  PubMed  Google Scholar 

  8. Contreras FX et al (2012) Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481(7382):525–529

    Article  CAS  PubMed  Google Scholar 

  9. Jankovic J, Stacy M (2007) Medical management of levodopa-associated motor complications in patients with Parkinson’s disease. CNS Drugs 21(8):677–692

    Article  CAS  PubMed  Google Scholar 

  10. Chan RB et al (2012) Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J Biol Chem 287(4):2678–2688

    Article  CAS  PubMed  Google Scholar 

  11. Shimizu T (2009) Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol 49:123–150

    Article  CAS  PubMed  Google Scholar 

  12. Lesa GM et al (2003) Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans. J Cell Sci 116(Pt 24):4965–4975

    Article  CAS  PubMed  Google Scholar 

  13. Raghu P et al (2009) Rhabdomere biogenesis in Drosophila photoreceptors is acutely sensitive to phosphatidic acid levels. J Cell Biol 185(1):129–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cutler RG et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 101(7):2070–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wen PJ, Osborne SL, Meunier FA (2011) Dynamic control of neuroexocytosis by phosphoinositides in health and disease. Prog Lipid Res 50(1):52–61

    Article  CAS  PubMed  Google Scholar 

  16. Rohrbough J et al (2004) Ceramidase regulates synaptic vesicle exocytosis and trafficking. J Neurosci 24(36):7789–7803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rickman C, Davletov B (2005) Arachidonic acid allows SNARE complex formation in the presence of Munc 18. Chem Biol 12(5):545–553

    Article  CAS  PubMed  Google Scholar 

  18. Osborne SL, Meunier FA, Schiavo G (2001) Phosphoinositides as key regulators of synaptic function. Neuron 32(1):9–12

    Article  CAS  PubMed  Google Scholar 

  19. Meunier FA et al (2005) Phosphatidylinositol 3-kinase C2alpha is essential for ATP-dependent priming of neurosecretory granule exocytosis. Mol Biol Cell 16(10):4841–4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Osborne SL, Wen PJ, Meunier FA (2006) Phosphoinositide regulation of neuroexocytosis: adding to the complexity. J Neurochem 98(2):336–342

    Article  CAS  PubMed  Google Scholar 

  21. Osborne SL et al (2008) PIKfyve negatively regulates exocytosis in neurosecretory cells. J Biol Chem 283(5):2804–2813

    Article  CAS  PubMed  Google Scholar 

  22. Osborne SL, Meunier FA (2008) Lipids and secretory vesicle exocytosis. In: Wang Z-W (ed) Molecular mechanisms of neurotransmitter release. Springer, New York, pp 239–261

    Chapter  Google Scholar 

  23. Wen PJ et al (2008) Ca2+−regulated pool of phosphatidylinositol-3-phosphate produced by phosphatidylinositol 3-kinase C2alpha on neurosecretory vesicles. Mol Biol Cell 19(12):5593–5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wen PJ, Osborne SL, Meunier FA (2012) Phosphoinositides in neuroexocytosis and neuronal diseases. Curr Top Microbiol Immunol 362:87–98

    CAS  PubMed  Google Scholar 

  25. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419):201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rituper B, Davletov B, Zorec R (2010) Lipid–protein interactions in exocytotic release of hormones and neurotransmitters. Clin Lipidol 5(5):747–761

    Article  CAS  Google Scholar 

  27. Gerber SH et al (2008) Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science 321(5895):1507–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744(3):493–517

    PubMed  Google Scholar 

  29. Lucero HA, Robbins PW (2004) Lipid rafts-protein association and the regulation of protein activity. Arch Biochem Biophys 426(2):208–224

    Article  CAS  PubMed  Google Scholar 

  30. Salaun C, James DJ, Chamberlain LH (2004) Lipid rafts and the regulation of exocytosis. Traffic 5(4):255–264

    Article  PubMed  PubMed Central  Google Scholar 

  31. Levental I, Grzybek M, Simons K (2010) Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49(30):6305–6316

    Article  CAS  PubMed  Google Scholar 

  32. Lang T et al (2001) SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 20(9):2202–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wenk MR, De Camilli P (2004) Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc Natl Acad Sci U S A 101(22):8262–8269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Darios F, Connell E, Davletov B (2007) Phospholipases and fatty acid signalling in exocytosis. J Physiol 585(Pt 3):699–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verhage M (2005) Fatty acids add grease to exocytosis. Chem Biol 12(5):511–512

    Article  CAS  PubMed  Google Scholar 

  36. Amatore C et al (2006) Regulation of exocytosis in chromaffin cells by trans-insertion of lysophosphatidylcholine and arachidonic acid into the outer leaflet of the cell membrane. Chembiochem 7(12):1998–2003

    Article  CAS  PubMed  Google Scholar 

  37. Lin RC, Scheller RH (2000) Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol 16:19–49

    Article  CAS  PubMed  Google Scholar 

  38. Brown WJ, Chambers K, Doody A (2003) Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4(4):214–221

    Article  CAS  PubMed  Google Scholar 

  39. Vitale N et al (2001) Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J 20(10):2424–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rossetto O et al (2006) Presynaptic enzymatic neurotoxins. J Neurochem 97(6):1534–1545

    Article  CAS  PubMed  Google Scholar 

  41. Latham CF et al (2007) Arachidonic acid potentiates exocytosis and allows neuronal SNARE complex to interact with Munc 18a. J Neurochem 100(6):1543–1554

    CAS  PubMed  Google Scholar 

  42. Megighian A et al (2007) A lysolecithin/fatty acid mixture promotes and then blocks neurotransmitter release at the Drosophila melanogaster larval neuromuscular junction. Neurosci Lett 416(1):6–11

    Article  CAS  PubMed  Google Scholar 

  43. Kozlov MM, McMahon HT, Chernomordik LV (2010) Protein-driven membrane stresses in fusion and fission. Trends Biochem Sci 35(12):699–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeniou-Meyer M et al (2007) Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage. J Biol Chem 282(30):21746–21757

    Article  CAS  PubMed  Google Scholar 

  45. Poccia D, Larijani B (2009) Phosphatidylinositol metabolism and membrane fusion. Biochem J 418(2):233–246

    Article  CAS  PubMed  Google Scholar 

  46. Chasserot-Golaz S et al (2010) Lipid dynamics in exocytosis. Cell Mol Neurobiol 30(8):1335–1342

    Article  CAS  PubMed  Google Scholar 

  47. Freyberg Z, Siddhanta A, Shields D (2003) “Slip, sliding away”: phospholipase D and the Golgi apparatus. Trends Cell Biol 13(10):540–546

    Article  CAS  PubMed  Google Scholar 

  48. Humeau Y et al (2001) A role for phospholipase D1 in neurotransmitter release. Proc Natl Acad Sci U S A 98(26):15300–15305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lam AD et al (2008) SNARE-catalyzed fusion events are regulated by Syntaxin1A-lipid interactions. Mol Biol Cell 19(2):485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brose N, Rosenmund C (2002) Move over protein kinase C, you’ve got company: alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci 115(Pt 23):4399–4411

    Article  CAS  PubMed  Google Scholar 

  51. Wakelam MJ (1998) Diacylglycerol—when is it an intracellular messenger? Biochim Biophys Acta 1436(1–2):117–126

    Article  CAS  PubMed  Google Scholar 

  52. Burgoyne RD et al (2009) The functions of Munc18-1 in regulated exocytosis. Ann N Y Acad Sci 1152:76–86

    Article  CAS  PubMed  Google Scholar 

  53. Rhee JS et al (2002) Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108(1):121–133

    Article  CAS  PubMed  Google Scholar 

  54. Huang FD et al (2004) Rolling blackout, a newly identified PIP2-DAG pathway lipase required for Drosophila phototransduction. Nat Neurosci 7(10):1070–1078

    Article  CAS  PubMed  Google Scholar 

  55. Denis I et al (2013) Omega-3 fatty acids and brain resistance to ageing and stress: body of evidence and possible mechanisms. Ageing Res Rev 12(2):579–594

    Article  CAS  PubMed  Google Scholar 

  56. Horrocks LA, Farooqui AA (2004) Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids 70(4):361–372

    Article  CAS  PubMed  Google Scholar 

  57. Creutz CE (1981) cis-Unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin. J Cell Biol 91(1):247–256

    Article  CAS  PubMed  Google Scholar 

  58. Farooqui AA et al (1997) Phospholipase A2 and its role in brain tissue. J Neurochem 69(3):889–901

    Article  CAS  PubMed  Google Scholar 

  59. Sontag JM et al (1991) A pertussis-toxin-sensitive protein controls exocytosis in chromaffin cells at a step distal to the generation of second messengers. Biochem J 274(Pt 2):339–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bazan NG (2006) Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 29(5):263–271

    Article  CAS  PubMed  Google Scholar 

  61. Scott BL, Bazan NG (1989) Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc Natl Acad Sci U S A 86(8):2903–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Calandria JM et al (2009) Selective survival rescue in 15-lipoxygenase-1-deficient retinal pigment epithelial cells by the novel docosahexaenoic acid-derived mediator, neuroprotectin D1. J Biol Chem 284(26):17877–17882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marcheselli VL et al (2010) Neuroprotectin D1/protectin D1 stereoselective and specific binding with human retinal pigment epithelial cells and neutrophils. Prostaglandins Leukot Essent Fatty Acids 82(1):27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mukherjee PK et al (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101(22):8491–8496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bazan NG (2003) Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res 44(12):2221–2233

    Article  CAS  PubMed  Google Scholar 

  66. Wei S et al (2003) Group IIA secretory phospholipase A2 stimulates exocytosis and neurotransmitter release in pheochromocytoma-12 cells and cultured rat hippocampal neurons. Neuroscience 121(4):891–898

    Article  CAS  PubMed  Google Scholar 

  67. Rigoni M et al (2005) Equivalent effects of snake PLA2 neurotoxins and lysophospholipid-fatty acid mixtures. Science 310(5754):1678–1680

    Article  CAS  PubMed  Google Scholar 

  68. Caccin P et al (2006) Reversible skeletal neuromuscular paralysis induced by different lysophospholipids. FEBS Lett 580(27):6317–6321

    Article  CAS  PubMed  Google Scholar 

  69. Gallop JL, Butler PJ, McMahon HT (2005) Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature 438(7068):675–678

    Article  CAS  PubMed  Google Scholar 

  70. Higgs HN, Glomset JA (1996) Purification and properties of a phosphatidic acid-preferring phospholipase A1 from bovine testis. Examination of the molecular basis of its activation. J Biol Chem 271(18):10874–10883

    Article  CAS  PubMed  Google Scholar 

  71. Baba T et al (2014) Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J Biol Chem 289(16):11497–11511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Okudaira M et al (2014) Separation and quantification of 2-acyl-1-lysophospholipids and 1-acyl-2-lysophospholipids in biological samples by LC-MS/MS. J Lipid Res 55(10):2178–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Han X, Gross RW (1996) Structural determination of lysophospholipid regioisomers by electrospray ionization tandem mass spectrometry. J Am Chem Soc 118:451–457

    Article  CAS  Google Scholar 

  74. Fahy E et al (2005) A comprehensive classification system for lipids. J Lipid Res 46(5):839–861

    Article  CAS  PubMed  Google Scholar 

  75. Fenn JB et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71

    Article  CAS  PubMed  Google Scholar 

  76. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312(5771):212–217

    Article  CAS  PubMed  Google Scholar 

  77. Ozbalci C, Sachsenheimer T, Brugger B (2013) Quantitative analysis of cellular lipids by nano-electrospray ionization mass spectrometry. Methods Mol Biol 1033:3–20

    Article  PubMed  CAS  Google Scholar 

  78. Wenk MR (2010) Lipidomics: new tools and applications. Cell 143(6):888–895

    Article  CAS  PubMed  Google Scholar 

  79. Narayanaswamy P et al (2014) Lipidomic “deep profiling”: an enhanced workflow to reveal new molecular species of signaling lipids. Anal Chem 86(6):3043–3047

    Article  CAS  PubMed  Google Scholar 

  80. Leng J et al (2013) A highly sensitive isotope-coded derivatization method and its application for the mass spectrometric analysis of analytes containing the carboxyl group. Anal Chim Acta 758:114–121

    Article  CAS  PubMed  Google Scholar 

  81. Li J et al (2009) Rapid transmethylation and stable isotope labeling for comparative analysis of fatty acids by mass spectrometry. Anal Chem 81(12):5080–5087

    Article  CAS  PubMed  Google Scholar 

  82. Griffiths WJ (2003) Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids. Mass Spectrom Rev 22(2):81–152

    Article  CAS  PubMed  Google Scholar 

  83. Moldovan Z, Jover E, Bayona JM (2002) Systematic characterisation of long-chain aliphatic esters of wool wax by gas chromatography-electron impact ionisation mass spectrometry. J Chromatogr A 952(1–2):193–204

    Article  CAS  PubMed  Google Scholar 

  84. Christie WW (1998) Gas chromatography-mass spectrometry methods for structural analysis of fatty acids. Lipids 33(4):343–353

    Article  CAS  PubMed  Google Scholar 

  85. Eder K (1995) Gas chromatographic analysis of fatty acid methyl esters. J Chromatogr B Biomed Appl 671(1–2):113–131

    Article  CAS  PubMed  Google Scholar 

  86. Dodds ED et al (2005) Gas chromatographic quantification of fatty acid methyl esters: flame ionization detection vs. electron impact mass spectrometry. Lipids 40(4):419–428

    Article  CAS  PubMed  Google Scholar 

  87. Rezanka T (2000) Analysis of very long chain polyunsaturated fatty acids using high-performance liquid chromatography—atmospheric pressure chemical ionization mass spectrometry. Biochem Syst Ecol 28(9):847–856

    Article  CAS  PubMed  Google Scholar 

  88. Lee SH, Pettinella C, Blair IA (2006) LC/ESI/MS analysis of saturated and unsaturated fatty acids in rat intestinal epithelial cells. Curr Drug Metab 7(8):929–937

    Article  CAS  PubMed  Google Scholar 

  89. Hellmuth C et al (2012) Nonesterified fatty acid determination for functional lipidomics: comprehensive ultrahigh performance liquid chromatography-tandem mass spectrometry quantitation, qualification, and parameter prediction. Anal Chem 84(3):1483–1490

    Article  CAS  PubMed  Google Scholar 

  90. Johnson DW (2005) Contemporary clinical usage of LC/MS: analysis of biologically important carboxylic acids. Clin Biochem 38(4):351–361

    Article  CAS  PubMed  Google Scholar 

  91. Kanawati B, Schmitt-Kopplin P (2010) Exploring rearrangements along the fragmentation of glutaric acid negative ion: a combined experimental and theoretical study. Rapid Commun Mass Spectrom 24(8):1198–1206

    Article  CAS  PubMed  Google Scholar 

  92. Johnson DW, Trinh MU (2003) Analysis of isomeric long-chain hydroxy fatty acids by tandem mass spectrometry: application to the diagnosis of long-chain 3-hydroxyacyl CoA dehydrogenase deficiency. Rapid Commun Mass Spectrom 17(2):171–175

    Article  CAS  PubMed  Google Scholar 

  93. Koulman A et al (2009) Comparative high-speed profiling of carboxylic acid metabolite levels by differential isotope-coded MALDI mass spectrometry. Anal Chem 81(18):7544–7551

    Article  CAS  PubMed  Google Scholar 

  94. Yang WC, Adamec J, Regnier FE (2007) Enhancement of the LC/MS analysis of fatty acids through derivatization and stable isotope coding. Anal Chem 79(14):5150–5157

    Article  CAS  PubMed  Google Scholar 

  95. Lamos SM et al (2007) Relative quantification of carboxylic acid metabolites by liquid chromatography-mass spectrometry using isotopic variants of cholamine. Anal Chem 79(14):5143–5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li X, Franke AA (2011) Improved LC-MS method for the determination of fatty acids in red blood cells by LC-orbitrap MS. Anal Chem 83(8):3192–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Narayana VK et al (2015) Profiling of free fatty acids using stable isotope tagging uncovers a role for saturated fatty acids in neuroexocytosis. Chem Biol 22:1552–1561

    Article  CAS  Google Scholar 

  98. Morikawa R et al (2007) Phospholipase A(1) assays using a radiolabeled substrate and mass spectrometry. Methods Enzymol 434:1–13

    Article  CAS  PubMed  Google Scholar 

  99. Tokumura A et al (1986) Involvement of lysophospholipase D in the production of lysophosphatidic acid in rat plasma. Biochim Biophys Acta 875(1):31–38

    Article  CAS  PubMed  Google Scholar 

  100. Yokoyama K, Shimizu F, Setaka M (2000) Simultaneous separation of lysophospholipids from the total lipid fraction of crude biological samples using two-dimensional thin-layer chromatography. J Lipid Res 41(1):142–147

    CAS  PubMed  Google Scholar 

  101. Crack PJ et al (2014) Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes. J Neuroinflammation 11:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Salous AK et al (2013) Mechanism of rapid elimination of lysophosphatidic acid and related lipids from the circulation of mice. J Lipid Res 54(10):2775–2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lisa M, Cifkova E, Holcapek M (2011) Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography-mass spectrometry. J Chromatogr A 1218(31):5146–5156

    Article  CAS  PubMed  Google Scholar 

  104. Onorato JM et al (2014) Challenges in accurate quantitation of lysophosphatidic acids in human biofluids. J Lipid Res 55(8):1784–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Koistinen KM et al (2015) Quantitative lysophospholipidomics in human plasma and skin by LC-MS/MS. Anal Bioanal Chem 407(17):5091–5099

    Article  CAS  PubMed  Google Scholar 

  106. Cifkova E et al (2016) Hydrophilic interaction liquid chromatography-mass spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes. J Chromatogr A

    Google Scholar 

  107. Baker DL et al (2001) Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry. Anal Biochem 292(2):287–295

    Article  CAS  PubMed  Google Scholar 

  108. Bechler ME, de Figueiredo P, Brown WJ (2012) A PLA1-2 punch regulates the Golgi complex. Trends Cell Biol 22(2):116–124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Rachel Gormal and Rowan Tweedale for helping in the preparation of the chapter. This work was supported by a National Health and Medical Research Council (NHMRC) project grant (APP1058769). F.A.M. is a NHMRC Senior Research Fellow (APP1060075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Kvaskoff or Frederic A. Meunier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Narayana, V.K., Kvaskoff, D., Meunier, F.A. (2017). New Developments in Free Fatty Acids and Lysophospholipids: Decoding the Role of Phospholipases in Exocytosis. In: Pébay, A., Wong, R. (eds) Lipidomics of Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49343-5_10

Download citation

Publish with us

Policies and ethics