Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Catalytic cracking is the thermal decomposition of petroleum constituents in the presence of a catalyst. Refineries use the process cracking to correct the imbalance between the market demand for gasoline and the excess of heavy, high boiling range products (as well as heavy oil and tar sand bitumen) resulting from the distillation of the crude oil.

The typical catalytic cracker that accepted a single-source gas oil feedstock is almost extinct and in the modern refinery is more inclined to be a blend of several high-boiling fractions – often with heavy oil and/or residuum as part of the blend, which has led to the development of residuum fluid catalytic cracking units. In addition to designing new units, as part of the evolutionary process many of the older catalytic cracking units were modified to accommodate more complex feedstocks as well as feedstock blends containing residua. Feedstocks to the modern units now range from blends of gas oil fractions (included in normal heavier feedstocks for upgrading) to residua (reduced crude), heavy oil, and even tar sand bitumen.

Fluid catalytic cracking is the most important conversion process used in petroleum refineries to convert the high-boiling feedstock constituents to more valuable naphtha, olefin gases, as well as other products and is likely to remain predominant in the refining industry for at least another three-to-five decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.G. Speight, B. Ozum: Petroleum Refining Processes (Marcel Dekker, New York 2002)

    Google Scholar 

  2. C.S. Hsu, P.R. Robinson: Practical Advances in Petroleum Processing, Vol. 1 (Springer, New York 2006)

    Book  Google Scholar 

  3. C.S. Hsu, P.R. Robinson: Practical Advances in Petroleum Processing, Vol. 2 (Springer, New York 2006)

    Book  Google Scholar 

  4. J.H. Gary, G.E. Handwerk, M.J. Kaiser: Petroleum Refining: Technology and Economics, 5th edn. (CRC, Boca Raton 2007)

    Google Scholar 

  5. J.G. Speight: Synthetic Fuels Handbook: Properties, Processes, and Performance (McGraw-Hill, New York 2008)

    Google Scholar 

  6. J.G. Speight: The Refinery of the Future (Gulf Professional, Elsevier, Oxford 2011)

    Book  Google Scholar 

  7. J.G. Speight: The Chemistry and Technology of Petroleum, 5th edn. (CRC, Boca Raton 2014)

    Google Scholar 

  8. D.S.J. Jones: Elements of Petroleum Processing (Wiley, New York 1995)

    Google Scholar 

  9. R.P. Fletcher: The history of fluidized catalytic cracking: A history of innovation: 1942–2008. In: Innovations in Industrial and Engineering Chemistry, ACS Symposium Series, Vol. 1000, ed. by W.H. Flank, M.A. Abraham, M.A. Matthews (American Chemical Society, Washington 2009) pp. 189–249

    Chapter  Google Scholar 

  10. A.A. Avidan, R. Shinnar: Development of catalytic cracking technology. A lesson in chemical reactor design, Ind. Eng. Chem. Res. 29(6), 931–942 (1990)

    Article  CAS  Google Scholar 

  11. G. Wang, J. Gao, C. Xu: Evolutionary design on FCC reactors driven by the high temperature and short contact time demands, Petroleum Sci. Technol. 22(11–12), 1581–1594 (2004)

    Article  CAS  Google Scholar 

  12. J. Dwyer, D.J. Rawlence: Fluid catalytic cracking: Chemistry, Catalysis Today 18, 487–507 (1993)

    Article  Google Scholar 

  13. K.A. Cumming, B.W. Wojciechowski: Cataltyic cracking: Catalysts, chemistry, and kinetics, Catalysis Rev. Sci. Eng. 38, 101–157 (1996)

    Article  CAS  Google Scholar 

  14. D.K. Liguras, D.T. Allen: Structural models for catalytic cracking. 2. Reactions of simulated oil mixtures, Ind. Eng. Chem. Res. 28(6), 674–682 (1989)

    Article  CAS  Google Scholar 

  15. L.L. Oliveira, E. Biscala: Catalytic cracking kinetic models. Parameter estimation and model evaluation, Ind. Eng. Chem. Res. 28(3), 264–271 (1989)

    Article  CAS  Google Scholar 

  16. S. Wang, H. Lu, J. Gao, C. Xu, D. Sun: Numerical predication of cracking reaction of particle clusters in fluid catalytic cracking riser reactors, Chin. J. Chem. Eng. 16(5), 670–678 (2008)

    Article  CAS  Google Scholar 

  17. J.G. Speight: Initial reactions in the coking of residua, Am. Chem. Soc. Div. Petrol. Chem. 32(2), 413 (1987)

    CAS  Google Scholar 

  18. I.A. Wiehe: The pendant-core building block model of petroleum residua, Energy Fuels 8, 536–544 (1994)

    Article  CAS  Google Scholar 

  19. J.F. Schabron, J.G. Speight: An Evaluation of the delayed coking product yield of heavy feedstocks using asphaltene content and carbon residue, Rev. Inst. Fr. Pet. 52(1), 73–85 (1997)

    Article  CAS  Google Scholar 

  20. D.A. Storm, S.J. Decanio, J.C. Edwards, E.Y. Sheu: Sediment formation during heavy oil upgrading, Petroleum Sci. Technol. 15, 77 (1997)

    Article  CAS  Google Scholar 

  21. E. Fitzer, K. Mueller, W. Schaefer: The chemistry of the pyrolytic conversion of organic compounds to carbon, Chem. Phys. Carbon 7, 237–383 (1971)

    CAS  Google Scholar 

  22. J.G. Speight: Thermal chemistry of petroleum constituents. In: Petroleum Chemistry and Refining, ed. by J.G. Speight (Taylor Francis, Washington 1998)

    Google Scholar 

  23. A. Bjorseth: Handbook of Polycyclic Aromatic Hydrocarbons (Marcel Dekker, New York 1983)

    Google Scholar 

  24. J.R. Dias: Handbook of Polycyclic Hydrocarbons. Part A. Benzenoid Hydrocarbons (Elsevier, New York 1987)

    Google Scholar 

  25. J.R. Dias: Handbook of Polycyclic Hydrocarbons. Part B. Polycyclic Isomers and Heteroatom Analogs of Benzenoid Hydrocarbons (Elsevier, New York 1988)

    Google Scholar 

  26. R.A. Magaril, E.L. Aksenova: Study of the mechanism of coke formation in the cracking of petroleum resins, Int. Chem. Eng. 8, 727–729 (1968)

    Google Scholar 

  27. R.A. Magaril, L.F. Ramazaeva: Study of coke formation in the thermal decomposition of asphaltenes in solution, Izv. Vyssh. Ucheb. Zaved. Neft Gaz 12(1), 61–64 (1969)

    CAS  Google Scholar 

  28. R.L. Magaril, L.F. Ramazaeva, E.I. Askenova: Kinetics of coke formation in the thermal processing of petroleum, Khim. Tekhnol. Topliv Masel. 15(3), 15–16 (1970)

    CAS  Google Scholar 

  29. T.A. Cooper, W.P. Ballard: Thermal cracking, visbreaking, and thermal reforming. In: Advances in Petroleum Chemistry and Refining, Vol. 6, ed. by K.A. Kobe, J.J. McKetta (Interscience, New York 1962) pp. 170–239

    Google Scholar 

  30. J.G. Speight: Handbook of Petroleum Product Analysis, 2nd edn. (Wiley, Hoboken 2015)

    Google Scholar 

  31. J.G. Speight: The Desulfurization of Heavy Oils and Residua, 2nd edn. (Marcel Dekker, New York 2000)

    Google Scholar 

  32. J. Ancheyta, J.G. Speight: Hydroprocessing of Heavy Oils and Residua (CRC, Boca Raton 2007)

    Google Scholar 

  33. C.M.d.L. Alvarenga Baptista, H.S. Cerqueira, E.F. Sandes: Process for fluid catalytic cracking of mixed feedstocks of hydrocarbons from different sources, US Patent 7736491 (2010)

    Google Scholar 

  34. C.M.d.L. Alvarenga Baptista, E.M. Moreira, H.S. Cerqueira: Process for fluid catalytic cracking of hydrocarbon feedstocks with high levels of basic nitrogen, US Patent 7744745 (2010)

    Google Scholar 

  35. J.G. Speight, D.I. Exall: Refining Used Lubricating Oils (CRC, Boca Raton 2014)

    Book  Google Scholar 

  36. D.B. Bartholic: Preparation of FCC charge from residual fractions, US Patent 4243514 (1981)

    Google Scholar 

  37. D.B. Bartholic: Upgrading petroleum and residual fractions thereof, Patent US4263128 (1981)

    Google Scholar 

  38. L.M. Wolschlag, A. Couch: UOP FCC Innovations Developed Using Sophisticated Engineering Tools, Tech. Rep. AM-10-109 (UOP LLC, Des Plaines 2010)

    Google Scholar 

  39. W. Reid: Recent Trends in Fluid Catalytic Cracking Patents, Part V: Reactor Section. Dilworth IP. www.dilworthip.com/recent-trends-fluid-catalytic-cracking-patents-part-v-reactor-section/

  40. D.B. Ardern, J.C. Dart, R.C. Lassiat: Catalytic cracking in fixed-and moving-bed processes. In: Progress in Petroleum Technology, Advances in Chemistry, Vol. 5, ed. by R.E. Wilson (American Chemical Society, Washington 1951) pp. 13–29

    Chapter  Google Scholar 

  41. ACS: The Houdry Process for the Catalytic Conversion of Crude Petroleum to High-Octane Gasoline (American Chemical Society and the Sun Company Washington DC and Marcus Hook, Pennsylvania 1996)

    Google Scholar 

  42. F.J. Van Antwerpen: Thermofor catalytic cracking, Ind. Eng. Chem. 36(8), 694–698 (1944)

    Article  Google Scholar 

  43. S.C. Eastwood, C.V. Hornberg, A.E. Potas: Thermofor catalytic cracking unit, Ind. Eng. Chem. 39(12), 1685–1690 (1947)

    Article  CAS  Google Scholar 

  44. H.D. Noll, J.C. Dart, R.E. Bland: The houdriflow catalytic cracking process today, Proc. 4th World Petroleum Congress, Rome (1955)

    Google Scholar 

  45. R. Smith, W. Schortman, G. Mills: Characteristics of a houdresid gasoline, Ind. Eng. Chem. Chem. Eng. Data Ser. 3(2), 283–386 (1958)

    Article  CAS  Google Scholar 

  46. J. Weikart: Production of motor fuels from petroleum oils, US Patent 2641573 (1953)

    Google Scholar 

  47. J. Van Pool: Catalytic cracking process, US Patent 3542668 (1970)

    Google Scholar 

  48. R. Sadeghbeigi: Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units, 3rd edn. (Elsevier, Amsterdam 2012)

    Google Scholar 

  49. C.L. Hemler, L.F. Smith: UOP fluid catalytic cracking process. In: Handbook of Petroleum Refining Processes, ed. by R.A. Meyers (McGraw-Hill, New York 1997), pp. 3.47–3.70

    Google Scholar 

  50. P.K. Ladwig: Handbook of Petroleum Refining Processes, 2nd edn., ed. by R.A. Meyers (McGraw-Hill, New York 1997) Chapter 3.1

    Google Scholar 

  51. D.B. Bartholic: Process for upgrading tar sand bitumen, US Patent 4804459 (1989)

    Google Scholar 

  52. D. Stratiev, R. Dinkov: Evaluation of FCC unit process variables mpact on yield distribution and product quality part I. Evaluation of FCC unit variables impact on yield distribution, Petroleum Coal 49(3), 71–77 (2007)

    CAS  Google Scholar 

  53. R.E. Maples: Petroleum Refinery Process Economics, 2nd edn. (PennWell, Tulsa 2000)

    Google Scholar 

  54. Occupational Safety and Health Administration: OSHA Technical Manual, www.osha.gov/dts/osta/otm/otm_iv/otm_iv_2.html#2

  55. D. DeCroocq: Catalytic Cracking of Heavy Petroleum Hydrocarbons (Editions Technip, Paris 1984)

    Google Scholar 

  56. J.F. Le Page, J. Cosyns, P. Courty, E. Freund, J.P. Franck, Y. Jacquin, B. Juguin, C. Marcilly, G. Martino, J. Miguel, R. Montarnal, A. Sugier, H. von Landeghem: Applied Heterogeneous Catalysis (Editions Technip, Paris 1987)

    Google Scholar 

  57. B.C. Gates, J.R. Katzer, G.C.A. Schuit: Chemistry of Catalytic Processes (McGraw-Hill, New York 1979)

    Google Scholar 

  58. B.W. Wojciechowski, A. Corma: Catalytic Cracking: Catalysts, Chemistry, and Kinetics (Marcel Dekker, New York 1986)

    Google Scholar 

  59. M. Occelli: Fluid catalytic cracking: Role in Modern Refining, Symposium, Vol. 375 (American Chemical Society, Washington 1988)

    Google Scholar 

  60. A.B. Stiles, T.A. Koch: Catalyst Manufacture (Marcel Dekker, New York 1995)

    Google Scholar 

  61. A. Cybulski, J.A. Moulijn: Structured Catalysts and Reactors (Marcel Dekker, New York 1998)

    Google Scholar 

  62. M.L. Occelli, P. O’Connor: Fluid Cracking Catalysts (Marcel Dekker, New York 1998)

    Google Scholar 

  63. M.E. Occelli: Advances in Fluid Catalytic Cracking: Testing, Characterization, and Environmental Regulations (CRC, Boca Raton 2010)

    Book  Google Scholar 

  64. E. Tangstad, M. Bendicksen, T. Myrstad: Effect of sodium deposition on FCC catalysts deactivation, Appl. Catalysis A 150(1), 85–99 (1997)

    Article  CAS  Google Scholar 

  65. H.S. Cerqueira, G. Caeiro, L. Costa, F. Ramôa Ribeiro: Deactivation of FCC catalysts, J. Mol. Catalysis A 292(1–2), 1–13 (2008)

    Article  CAS  Google Scholar 

  66. M.A. Gerber, J.L. Fulton, J.G. Frye, L.J. Silva, L.E. Bowman, C.M. Wai: Regeneration of Hydrotreating and FCC Catalysts. US Department of Energy Contract No. DE-AC06-76RLO 1830, Tech. Rep. PNNL-13025 (Pacific Northwest National Laboratory, Richland 1999)

    Google Scholar 

  67. ASTM: Annual Book of Standards (ASTM International, West Conshohocken 2016)

    Google Scholar 

  68. S.F. González, J.L. Carrillo, M. Núñez, L.J. Hoyos, S.A. Giraldo: Modified design for vacuum residue processing, CTandF – Ciencia, Tecnología y Futuro 4(2), 57–69 (2010)

    Google Scholar 

  69. S.W. Shorey, D.A. Lomas, W.H. Keesom: Use FCC feed pretreating methods to remove sulfur, Hydrocarbon Process. 78(11), 43–51 (1999)

    CAS  Google Scholar 

  70. J.S. Yoo: Metal recovery and rejuvenation of metal-loaded spent catalysts, Catalysis Today 44(1), 27–46 (1998)

    Article  CAS  Google Scholar 

  71. R.C. McFarlane, R.C. Reineman, J.F. Bartee, C. Georgakis: Dynamic simulator for a model IV catalytic cracking unit, Proc. AIChE Annu. Meet (American Institute of Chemical Engineers, Washington 1990)

    Google Scholar 

  72. J.G. Speight: Natural Gas: A Basic Handbook (Gulf, Houston 2007)

    Google Scholar 

  73. G. Heinrich, J.-L. Mauleon: The R2R process: 21st century FCC technology, Rev. Inst. Fr. Pet. 49(5), 509–520 (1994)

    Article  Google Scholar 

  74. K. Inai: Operation results of the R2R process, Rev. Inst. Fr. Pet. 49(5), 521–527 (1994)

    Article  CAS  Google Scholar 

  75. J.G. Speight, S.E. Moschopedis: The production of low-sulfur liquids and coke from athabasca bitumen, Fuel Process. Technol. 2, 295 (1979)

    Article  CAS  Google Scholar 

  76. K.A. Couch, K.D. Seibert, P.J. Van Opdorp: Controlling FCC yields and emissions, Proc. Natl. Petrochem. Refiners Assoc. (NPRA) Annual Meeting, San Antonio (2004)

    Google Scholar 

  77. L.M. Wolschlag, K.A. Couch, X. Zhu, J. Alves: UOP FCC Design Advancements to Reduce Energy Consumption And CO2 Emissions, Tech. Rep. AM-09-35 (UOP LLC, Des Plaines 2009)

    Google Scholar 

  78. R. Sadeghbeigi: Fluid Catalytic Cracking: Design, Operation, and Troubleshooting of FCC Facilities (Gulf, Houston 1995)

    Google Scholar 

  79. RTI: Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units – Background Information for Promulgated Standards and Response to Comments. Final Report, EPA-453/R-01-011 (Research Triangle Institute, Center for Environmental Analysis and US Environmental Protection Agency, Office of Air Quality Planning and Standards, Waste and Chemical Process Group, Research Triangle Park 2001)

    Google Scholar 

  80. O.D. Mante, F.A. Agblevor, S.T. Oyama, R. McClung: The effect of hydrothermal treatment of FCC catalysts and ZSM-5 additives in catalytic conversion of biomass, Appl. Catalysis A 445/446, 312–320 (2012)

    Article  Google Scholar 

  81. G. Fogassy, N. Thegarid, G. Toussaint, A.C. Van Veen, Y. Schuurman, C. Mirodatos: Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units, Appl. Catalysis B 96(3/4), 476–485 (2010)

    Article  CAS  Google Scholar 

  82. G. Fogassy, N. Thegarid, Y. Schuurman, C. Mirodatos: From biomass to bio-gasoline by FCC co-processing: Effect of feed composition and catalyst structure on product quality, Energy Environ. Sci. 4, 5068–5076 (2011)

    Article  CAS  Google Scholar 

  83. J.G.E. Speight: The Biofuels Handbook (Royal Society of Chemistry, London 2011)

    Book  Google Scholar 

  84. P.M. Hudec, M. Horňáček, A. Smiešková, P. Daučík: Chemical recycling of waste hydrocarbons in catalytic cracking, Petroleum Coal 51(1), 51–58 (2009)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Speight, J.G. (2017). Fluid-Bed Catalytic Cracking. In: Hsu, C.S., Robinson, P.R. (eds) Springer Handbook of Petroleum Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-49347-3_19

Download citation

Publish with us

Policies and ethics