Skip to main content

Activated Carbon from Renewable Sources: Thermochemical Conversion and Activation of Biomass and Carbon Residues from Biomass Gasification

  • Chapter
  • First Online:
Waste Biomass Management – A Holistic Approach

Abstract

Activated carbon is one of the most widely applied adsorbent. As a porous carbon, it is used for the purification of both gaseous and liquid emissions. Activated carbon is prepared from fossil resources, such as coal, or from biomass through (hydro)thermal processing followed by chemical and/or physical activation. Further, some biomass thermal treatment processes, such as biomass gasification, produce carbon residues that can be modified to activated carbon with physical or chemical activation methods. The desired properties of activated carbon, i.e. high specific surface area and porosity, high carbon content and excellent sorption capacity, can be modified and optimized during thermochemical treatment and activation. Those properties, which are shortly considered, are important in different applications for activated carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadpour A, Do DD (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon 34:471–479. doi:10.1016/0008-6223(95)00204-9

    Article  CAS  Google Scholar 

  • Ahmadpour A, Do DD (1997) The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon 35:1723–1732. doi:10.1016/S0008-6223(97)00127-9

    Article  CAS  Google Scholar 

  • Al-Saleh MH (2015) Electrical and mechanical properties of graphene/carbon nanotube hybrid nano composites. Synth Met 209:41–46. doi:10.1016/j.synthmet.2015.06.023

    Article  CAS  Google Scholar 

  • Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640. doi:10.1021/ie0207919

    Article  CAS  Google Scholar 

  • Antal MJ, Allen SG, Dai X, Shimizu B, Tam MS, Grønli M (2000) Attainment of the theoretical yield of carbon from biomass. Ind Eng Chem Res 39:4024–4031. doi:10.1021/ie000511u

    Article  CAS  Google Scholar 

  • Avom J, KetchaMbadcam J, Noubactep C, Germain P (1997) Adsorption of methylene blue from an aqueous solution on to activated carbons from palm-tree cobs. Carbon 35:365–369. doi:10.1016/S0008-6223(96)00158-3

    Article  CAS  Google Scholar 

  • Bansal RC, Meenakshi G (2005) Activated carbon adsorption. Taylor & Francis, Boca Raton, FL, p 495

    Google Scholar 

  • Bart H-J, von Gemmingen U (2005) Ullmann’s encyclopedia of industrial chemistry–adsorption. Wiley, Weinheim, pp 549–1620

    Google Scholar 

  • Bergna D, Romar H, Tuomikoski S, Lassi U (2016) A demineralization process for lower ash content in activated carbons, manuscript (unpublished data)

    Google Scholar 

  • Bhatnagar A, Ji M, Choi Y-H, Jung W, Lee S-H, Kim S-J, Lee G, Suk H, Kim H-S, Min B, Kim S-H, Jeon B-H, Kang J-W (2008) Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon. Sep Sci Technol 43:886–907. doi:10.1080/01496390701787461

    Article  CAS  Google Scholar 

  • Bhatnagar A, Kumar E, Sillanpää M (2010a) Nitrate removal from water by nano-alumina: characterization and sorption studies. Chem Eng J 163:317–323. doi:10.1016/j.cej.2010.08.008

    Article  CAS  Google Scholar 

  • Bhatnagar A, Minocha AK, Sillanpää M (2010b) Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem Eng J 48:181–186. doi:10.1016/j.bej.2009.10.005

    Article  CAS  Google Scholar 

  • Borggaard OK, Raben-Lange B, Gimsing AL, Strobel BW (2005) Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma 127:270–279. doi:10.1016/j.geoderma.2004.12.011

    Article  CAS  Google Scholar 

  • Brewer C.E (2012) Biochar characterization and engineering. Dissertation, Iowa State University, p 182

    Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1–73. doi:10.1016/S1364-0321(99)00007-6

    Article  CAS  Google Scholar 

  • Bridgwater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis 51:3–22. doi:10.1016/S0165-2370(99)00005-4

    Article  CAS  Google Scholar 

  • Cakan R, Titirici M-M, Antinietti M, Cui G, Maier J, Hu Y-S (2008) Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance. Chem Commun:3759–3761. doi:10.1039/B805671B

  • Chang C-F, Chang C-Y, Tsai W-T (2000) Effects of burn-off and activation temperature on prepar ation of activated carbon from corn cob agrowaste by CO2 and steam. J Colloid Int Sci 232:45–49. doi:10.1006/jcis.2000.7171

    Article  CAS  Google Scholar 

  • Chun YN, Lim MS, Yoshikawa K (2012) Characteristics of the product from steam activation of sewage sludge. J Ind Eng Chem 18:839–847. doi:10.1016/j.jiec.2011.11.144

    Article  CAS  Google Scholar 

  • Council Directive (1999) 1999/31/EC Council Directive on the Landfill of Waste. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31999L0031. Accessed 12.11.2015

  • Demiral H, Gündüzoğlu G (2010) Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresour Technol 101:1675–1680. doi:10.1016/j.biortech.2009.09.087

    Article  CAS  PubMed  Google Scholar 

  • El-Ashtoukhy E-SZ, Amin NK, Abdelwahab O (2008) Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination 223:162–173. doi:10.1016/j.desal.2007.01.206

    Article  CAS  Google Scholar 

  • European Council of Chemical Manufacturers’ Federations (1986) Test methods for activated carbon. http://www.cefic.org/Documents/Other/Test-method-for-Activated-Carbon_86.pdf. Accessed 20.10.2015

  • Ewecharoen A, Thiravetyan P, Wendel E, Bertagnolli H (2009) Nickel adsorption by sodium polyacrylate-grafted activated carbon. J Hazard Mater 171:335–339. doi:10.1016/j.jhazmat.2009.06.008

    Article  CAS  PubMed  Google Scholar 

  • Fagernäs L, Kuoppala E, Ranta J, Arpiainen V, Tiilikkala K, Kemppainen R, Hagner M, Setälä H (2014) Hidaspyrolyysituotteiden hyödyntäminen ja tuotannon kannattavuus: Biohiili ja tisle Espoo. VTT Publications, Finland, 182. ISBN:978-951-38-8277-8

    Google Scholar 

  • Fischer Z, Bieńkowski P (1999) Some remarks about the effect of smoke from charcoal kilns on soil degradation. Environ Monit Assess 58:349–358. doi:10.1023/A:1006058512644

    Article  CAS  Google Scholar 

  • Fiol N, Villaescusa I, Martínez M, Miralles N, Poch J, Serarols J (2006) Sorption of Pb (II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep Purif Technol 50:132–140. doi:10.1016/j.seppur.2005.11.016

    Article  CAS  Google Scholar 

  • Franklin RE (1951) Crystallite growth in graphitizing and non-graphitizing carbons. Proc R Soc Lond 209:196–218

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  • Fu K, Yue Q, Gao B, Sun Y, Zhu L (2013) Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chem Eng J 228:1074–1082. doi:10.1016/j.cej.2013.05.028

    Article  CAS  Google Scholar 

  • Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefining 4:160–177. doi:10.1002/bbb.198

    Article  CAS  Google Scholar 

  • Government Decree (2013) 331/2013 Valtioneuvoston asetus kaatopaikoista (in Finnish). https://www.finlex.fi/fi/laki/alkup/2013/20130331. Accessed 23.10.2015

  • Guo S, Peng J, Li W, Yang K, Zhang L, Zhang S, Xia H (2009) Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Appl Surf Sci 255:443–8449. doi:10.1016/j.apsusc.2009.05.150

    Google Scholar 

  • Gupta VK (1998) Equilibrium uptake, sorption dynamics, process optimization, and column oper ations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Ind Eng Chem Res 37:192–202. doi:10.1021/ie9703898

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2000) Utilisation of bagasse fly ah (a sugar industry waste) for the removal of copper and zinc from wastewater. Sep Purif Technol 18:131–140. doi:10.1016/S1383-5866(99)00058-1

    Article  CAS  Google Scholar 

  • Hasar H (2003) Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J Hazard Mater B97:49–57. doi:10.1016/S0304-3894(02)00237-6

    Article  Google Scholar 

  • Hassan ML, Kassem NF, El-Lader AHA (2010) Novel Zr( IV)/sugar beet pulp composite for removal of sulfate and nitrate anions. J Appl Polym Sci 117:2205–2212. doi:10.1002/app.32063

    Article  CAS  Google Scholar 

  • Hawari AH, Mulligan CN (2006) Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresour Technol 97:692–700. doi:10.1016/j.biortech.2005.03.033

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second-order model for sorption processes. Process Biochem 34:451–465. doi:10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  • International Committee for Characterization and Terminology of Carbon (1982) First publication of 30 tentative definitions. Carbon 20:445–449

    Article  Google Scholar 

  • Ioannidou O, Zabaniotou A (2007) Agricultural residues as precursors for activated carbon production—a review. Renew Sustain Energy Rev 11:1966–2005. doi:10.1016/j.rser.2006.03.013

    Article  CAS  Google Scholar 

  • IUPAC Commision on Colloid and Surface Chemistry Including Catalysis (1985) Reporting physisorption Data of gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603

    Google Scholar 

  • IUPAC Manual Of Symbols And Terminology, Appendix 2, Pt.1 (1972) J Colloid Interface Chem Pure Appl Chem 31:578

    Google Scholar 

  • Kalavathy MH, Karthikeyan T, Rajgopal S, Miranda LR (2005) Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4- activated rubber wood sawdust. J Colloid Interf Sci 292:354–362. doi:10.1016/j.jcis.2005.05.087

    Article  CAS  Google Scholar 

  • Kalavathy H, Karthik B, Miranda LR (2010) Removal and recovery of Ni and Zn from aqueous solution using activated carbon from Heveabrasiliensis: batch and column studies. Colloids Surf B Biointerfaces 78:291–302. doi:10.1016/j.colsurfb.2010.03.014

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan KG, Mandla A, Wang TD, Kalbasi M (2004) Solution chemistry effects on orthophosphate adsorption by cationized solid wood residues. Environ Sci Technol 38:904–911. doi:10.1021/es034819z

    Article  CAS  PubMed  Google Scholar 

  • Kilpimaa S, Kuokkanen T, Lassi U (2011) Physical and chemical properties of wood ash from burning and gasification processes. The Journal of Solid Waste Technology and Management, Proceedings in ICSW 2011, pp 879–887

    Google Scholar 

  • Kilpimaa S, Runtti H, Lassi U, Kuokkanen T (2012) Chemical activation of gasification carbon residue for phosphate removal. Porous Media and its applications in Science, Engineering and Industry, AIP Conference proceedings 2012, pp 293–298

    Google Scholar 

  • Kilpimaa S, Kuokkanen T, Lassi U (2013) Characterization and utilization potential of wood ash from combustion process and carbon residue from gasification process. Bioresources 8:1011–1027

    Article  Google Scholar 

  • Kilpimaa S, Runtti H, Kangas T, Lassi U, Kuokkanen T (2014) Removal of phosphate and nitrate over a modified carbon residue from biomass gasification. Chem Eng Res Des 92:1923–1933. doi:10.1016/j.cherd.2014.03.019

    Article  CAS  Google Scholar 

  • Kilpimaa S, Runtti H, Kangas T, Lassi U, Kuokkanen T (2015) Physical activation of carbon residue from biomass gasification: novel sorbent for the removal of phosphates and nitrates from aqueous solution. J Ind Eng Chem 21:1354–1364. doi:10.1016/j.jiec.2014.06.006

    Article  CAS  Google Scholar 

  • Konwar LJ, Boro J, Deka D (2014) Review on latest developments in biodiesel production using carbon-based catalysts. Renew Sustain Energy Rev 29:546–564. doi:10.1016/j.rser.2013.09.003

    Article  CAS  Google Scholar 

  • Kouakou U, Ello AS, Yapo JA, Trokourey A (2013) Adsorption of iron and zinc on commercial activated carbon. J Environ Chem Ecotoxic 5:168–171. doi:10.5897/JECE2013.0264

    CAS  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Svenska Vetenskapsakad Handl 24:1–39

    Google Scholar 

  • Lam E, Luong JHT (2014) Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal 4:3393–3410. doi:10.1021/cs5008393

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici M-M, Fühner C, Bens O, Kern J (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, process and applications of wet and dry pyrolysis. Biofuels 2:71–106. doi:10.4155/bfs.10.81

    Google Scholar 

  • Li Y, Yu N, Yan P, Li Y, Zhou X, Chen S, Fan Z (2015) Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors. J Power Sources 300:309–317. doi:10.1016/j.jpowsour.2015.09.077

    Article  CAS  Google Scholar 

  • Liu Z-R, Zhou S-Q (2010) Adsorption of copper and nickel on Na-bentonite. Process Saf Environ Prot 88:62–66. doi:10.1016/j.psep.2009.09.001

    Article  CAS  Google Scholar 

  • Lopez E, Soto B, Arias M, Nun´ez A, Rubinos D, Barral MT (1998) Adsorbent properties of red mud and its use for wastewater treatment. Water Res 32:1314–1322. doi:10.1016/S0043-1354(97)00326-6

    Article  CAS  Google Scholar 

  • Lussier MG, Shull JC, Miller DJ (1994) Activated carbon from cherry stones. Carbon 32:1493–1498. doi:10.1016/0008-6223(94)90144-9

    Article  CAS  Google Scholar 

  • Makowski P, Cakan RD, Antonietti M, Goettmann F, Titirici M-M (2008) Selective partial hydro genation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon. Chem Commun 8:999–1001. doi:10.1039/B717928F

    Article  Google Scholar 

  • Marsh H, Rodríquez-Reinoso F (2006) Activated carbon. Elsevier, Amsterdam, p 536

    Google Scholar 

  • Martínez ML, Torres MM, Guzmán CA, Maestri DM (2006) Preparation and characteristics of activated carbon from olive stones and walnut shells. Ind Crops Prod 23:23–28. doi:10.1016/j.indcrop.2005.03.001

    Article  Google Scholar 

  • Mezenner NY, Bensmaili A (2009) Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem Eng J 147:87–96. doi:10.1016/j.cej.2008.06.024

    Article  CAS  Google Scholar 

  • Moreno JC, Gómez R, Giraldo L (2010) Removal of Mn, Fe, Ni and Cu Ions from wastewater using cow bone charcoal. Materials 3:452–466. doi:10.3390/ma3010452

    Article  CAS  Google Scholar 

  • Moreno-Castilla C (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42:83–94. doi:10.1016/j.carbon.2003.09.022

    Article  CAS  Google Scholar 

  • Nabais JV, Carrott P, Ribeiro Carrott MM, Luz V, Ortiz AL (2008) Influence of preparation conditions in the textural and chemical properties of activated carbons from a novel biomass precursor: the coffee endocarp. Bioresour Technol 99:7224–7231. doi:10.1016/j.biortech.2007.12.068

    Article  CAS  PubMed  Google Scholar 

  • Namasivayam C, Sangeetha D (2008) Application of coconut coir pith for the removal of sulfate and other anions from water. Desalination 219:1–13. doi:10.1016/j.desal.2007.03.008

    Article  CAS  Google Scholar 

  • Öztürk N, Bekta TE (2004) Nitrate removal from aqueous solution by adsorption onto various mate rials. J Hazard Mater 112:155–162. doi:10.1016/j.jhazmat.2004.05.001

    Article  PubMed  Google Scholar 

  • Papandreou A, Stournaras CJ, Panias D (2007) Copper and cadmium adsorption on pellets made from fired coal fly ash. J Hazard Mater 148:538–547. doi:10.1016/j.jhazmat.2007.03.020

    Article  CAS  PubMed  Google Scholar 

  • Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M (2006) Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem 41:609–615. doi:10.1016/j.procbio.2005.08.006

    Article  CAS  Google Scholar 

  • Ragan S, Megonnell N (2011) Activated carbon from renewable resources—lignin. Cellul Chem Technol 45:527–531

    CAS  Google Scholar 

  • Ramke H-G, Blöhse D, Lehmann H -J, Fettig J (2009) Hydrothermal carbonization of organic waste. In: Cossu R, Diaz LF, Stegmann R (eds) Sardinia 2009: twelfth international waste management and landfill symposium, Sardinia, Italy, 05–09 October 2009, Proceedings, CISA Publisher

    Google Scholar 

  • Repo E, Petrus R, Sillanpää M, Warchoł JK (2011) Equilibrium studies on the adsorption of Co(II) and Ni(II) by modified silica gels: one-component and binary systems. Chem Eng J 172:376–385. doi:10.1016/j.cej.2011.06.019

    Article  CAS  Google Scholar 

  • Repo E, Kurniawan TA, Warchol JK, Sillanpää MET (2009) Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents. J Hazard Mater 171:1071–1080. doi:10.1016/j.jhazmat.2009.06.111

    Article  CAS  PubMed  Google Scholar 

  • Rezaee A, Godini H, Dehestani S, Khavanin A (2008) Application of impregnate almond shell activated carbon b y zinc and zinc sulfate for nitrate removal from water. Iran J Environ Health Sci Eng 5:125–130

    CAS  Google Scholar 

  • Rodríquez-Reinoso F, Molina-Sabio M (1998) Textural and chemical characterization of mocroporous carbons. Adv Colloid Interf Sci 76–77:271–294. doi:10.1016/S0001-8686(98)00049-9

    Article  Google Scholar 

  • Roosta M, Ghaedi M, Daneshfar A, Sahraei R, Asghari A (2014a) Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology. Ultrason Sonochem 21:242–252. doi:10.1016/j.ultsonch.2013.05.014

    Article  CAS  PubMed  Google Scholar 

  • Roosta M, Ghaedi M, Daneshfar A, Sahraei R (2014b) Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon. Spectrochim Acta A Mol Biomol Spectrosc 122:223–231. doi:10.1016/j.saa.2013.10.116

    Article  CAS  PubMed  Google Scholar 

  • Roosta M, Ghaedi M, Shokri N, Daneshfar A, Sahraei R, Asghari A (2014c) Optimization of the combined ultrasonic assisted/adsorption methods for the removal of malachite green by gold nanoparticles loaded on activated carbon: experimental design. Spectrochim Acta A Mol Biomol Spectrosc 118:55–65. doi:10.1016/j.saa.2013.08.082

    Article  CAS  PubMed  Google Scholar 

  • Runtti H, Tuomikoski S, Kangas T, Lassi U, Kuokkanen T, Rämö J (2014) Chemically activated carbon residue from biomass gasification as a sorbent for iron(II), copper(II) and nickel(II) ions. J Water Process Eng 4:12–24. doi:10.1016/j.jwpe.2014.08.009

    Article  Google Scholar 

  • Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York, NY, 433 p

    Google Scholar 

  • Sadaka S, Negi S (2009) Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Prog Sustain Energy 28:427–434. doi:10.1002/ep.10392

    Article  CAS  Google Scholar 

  • Sevilla M, Maciá-Agulló JA, Fuertes AB (2011) Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenergy 35:3152–3159. doi:10.1016/j.biombioe.2011.04.032

    Article  CAS  Google Scholar 

  • Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ 4:1765–1771. doi:10.1039/C0EE00784F

    Article  CAS  Google Scholar 

  • Shams SS, Zhang LS, Hu R, Zhang R, Zhu J (2015) Synthesis of graphene from biomass: a green chemistry approach. Mater Lett 161:476–479. doi:10.1016/j.matlet.2015.09.022

    Article  CAS  Google Scholar 

  • Sheibani A, Shishehbor MR, Alaei H (2012) Removal of Fe(III) ions from aqueous solutionbyhazelnut hull as an adsorbent. Int J Ind Chem 3:1–4. doi:10.1186/2228-5547-3-4

    Article  Google Scholar 

  • Srinivasakannan C, Zailani ABM (2004) Production of activated carbon from rubber wood sawdust. Biomass Bioenergy 27:89–96. doi:10.1016/j.biombioe.2003.11.002

    Article  CAS  Google Scholar 

  • Sun X, Wang X, Feng N, Qiao L, Li X, He D (2013) A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries. J Anal Appl Pyrolysis 100:181–185. doi:10.1016/j.jaap.2012.12.016

    Article  CAS  Google Scholar 

  • Suopajärvi H, Pongrácz E, Fabritius T (2014) Bioreducer use in Finnish blast furnace ironmaking—analysis of CO2 emission reduction potential and mitigation cost. Appl Energy 124:82–93. doi:10.1016/j.apenergy.2014.03.008

    Article  Google Scholar 

  • Tan IAW, Ahmad AL, Hameed BH (2008) Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. J Hazard Mater 153:709–717. doi:10.1016/j.jhazmat.2007.09.014

    Article  CAS  PubMed  Google Scholar 

  • Teker M, Saltabas Ö, İmamoğlu M (1997) Adsorption of cobalt by activated carbon from the rice hulls. J Environ Sci Health 32:2077–2086. doi:10.1080/10934529709376668

    Google Scholar 

  • Temkin MJ, Pyzhev V (1940) Recent modifications to Langmuir isotherms. Acta Physiochim URSS 12:217–222

    Google Scholar 

  • Tingjun F, Li Z (2015) Review of recent development in Co-based catalysts supported on carbon materials for Fischer–Tropsch synthesis. Chem Eng Sci 135:3–20. doi:10.1016/j.ces.2015.03.007

    Article  Google Scholar 

  • Tuomikoski S (2014) Utilisation of gasification carbon residues—activation, characterisation and use as an adsorbent. D.Sc. thesis, University of Oulu, Department of Physics and Chemistry

    Google Scholar 

  • Wu D, Zhang B, Li C, Zhang Z, Kong H (2006) Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment. J Colloid Int Sci 304:300–360. doi:10.1016/j.jcis.2006.09.011

    Article  CAS  Google Scholar 

  • Yabushita M, Kobayashi H, Haraa K, Fukuoka A (2014) Quantitative evaluation of ball-milling effects on the hydrolysis of cellulose catalysed by activated carbon. Catal Sci Technol 4:2312. doi:10.1039/C4CY00175C

    Article  CAS  Google Scholar 

  • Zeng L, Li X, Liu J (2004) Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Res 38:1318–1326. doi:10.1016/j.watres.2003.12.009

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu Z, Cui G, Chen L (2015) Biomass-derived materials for electrochemical energy storages. Prog Polym Sci 43:136–164. doi:10.1016/j.progpolymsci.2014.09.003

    Article  CAS  Google Scholar 

  • Zheng H, Liu D, Zheng Y, Liang S, Liu Z (2009) Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J Hazard Mater 167:141–147. doi:10.1016/j.jhazmat.2008.12.093

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Zhou X, Cao H, Wang G, Liu Z (2014) Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Sources 258:290–296. doi:10.1016/j.jpowsour.2014.01.056

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the EU Interreg Nord programme within the project no 304-8455-10 (HighBio2-Biomass to fuels and chemicals) and accompanying companies for their financial and technical support. The authors also thank project SULKA (A32164, 524/2012) and Maa- ja vesitekniikan tuki ry. Davide Bergna acknowledges the Central Ostrobothnia Regional Fund for its personal grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulla Lassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bergna, D. et al. (2017). Activated Carbon from Renewable Sources: Thermochemical Conversion and Activation of Biomass and Carbon Residues from Biomass Gasification. In: Singh, L., Kalia, V. (eds) Waste Biomass Management – A Holistic Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-49595-8_9

Download citation

Publish with us

Policies and ethics