Skip to main content

Fast Hardware Architectures for Supersingular Isogeny Diffie-Hellman Key Exchange on FPGA

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2016 (INDOCRYPT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10095))

Included in the following conference series:

Abstract

In this paper, we present a constant-time hardware implementation that achieves new speed records for the supersingular isogeny Diffie-Hellman (SIDH), even when compared to highly optimized Haswell computer architectures. We employ inversion-free projective isogeny formulas presented by Costello et al. at CRYPTO 2016 on an FPGA. Modern FPGA’s can take advantage of heavily parallelized arithmetic in \(\mathbb {F}_{p^{2}}\), which lies at the foundation of supersingular isogeny arithmetic. Further, by utilizing many arithmetic units, we parallelize isogeny evaluations to accelerate the computations of large-degree isogenies by approximately 57%. On a constant-time implementation of 124-bit quantum security SIDH on a Virtex-7, we generate ephemeral public keys in 10.6 and 11.6 ms and generate the shared secret key in 9.5 and 10.8 ms for Alice and Bob, respectively. This improves upon the previous best time in the literature for 768-bit implementations by a factor of 1.48. Our 83-bit quantum security implementation improves upon the only other implementation in the literature by a speedup of 1.74 featuring fewer resources and constant-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, L., Jordan, S.: Report on Post-Quantum Cryptography. NIST IR 8105 (2016)

    Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 124–134 (1994)

    Google Scholar 

  3. Jao, D., Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25405-5_2

    Chapter  Google Scholar 

  4. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4_21

    Chapter  Google Scholar 

  5. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based on Isogenies. IACR Cryptology ePrint Archive 2006, 145 (2006)

    Google Scholar 

  6. Childs, A., Jao, D., Soukharev, V.: Constructing Elliptic Curve Isogenies in Quantum Subexponential Time (2010)

    Google Scholar 

  7. De Feo, L., Jao, D., Plut, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Crypt. 8(3), 209–247 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New York (1992)

    Google Scholar 

  9. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization. Math. Comput. 48, 243–264 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006, 291 (2006)

    Google Scholar 

  11. Koziel, B., Azarderakhsh, R., Kermani, M.M., Jao, D.: Post-Quantum Cryptography on FPGA Based on Isogenies on Elliptic Curves. Cryptology ePrint Archive, Report 2016, 672 (2016). http://eprint.iacr.org/2016/672

  12. Karmakar, A., Roy, S., Vercauteren, F., Verbauwhede, I.: Efficient finite field multiplication for isogeny based post quantum cryptography. In: International Workshop on the Arithmetic of Finite Fields, WAIFI 2016, to appear

    Google Scholar 

  13. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. McIvor, C., McLoone, M., McCanny, J.V.: High-radix systolic modular multiplication on reconfigurable hardware. In: IEEE International Conference on Field-Programmable Technology, pp. 13–18, December 2005

    Google Scholar 

  15. Orup, H.: Simplifying quotient determination in high-radix modular multiplication. In: Proceedings of the 12th Symposium on Computer Arithmetic, ARITH 1995, pp. 193–199. IEEE Computer Society, Washington (1995)

    Google Scholar 

  16. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, AsiaPKC 2016, pp. 1–10. ACM, New York (2016)

    Google Scholar 

  17. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key exchange protocol on ARM. In: 15th International Conference on Cryptology and Network Security, CANS (2016)

    Google Scholar 

Download references

Acknowledgment

This material is based upon work supported by the NSF CNS-1464118 and NIST 60NANB16D246 grants awarded to Reza Azarderakhsh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Koziel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M. (2016). Fast Hardware Architectures for Supersingular Isogeny Diffie-Hellman Key Exchange on FPGA. In: Dunkelman, O., Sanadhya, S. (eds) Progress in Cryptology – INDOCRYPT 2016. INDOCRYPT 2016. Lecture Notes in Computer Science(), vol 10095. Springer, Cham. https://doi.org/10.1007/978-3-319-49890-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49890-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49889-8

  • Online ISBN: 978-3-319-49890-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics