Skip to main content

Experimental Validation of a Template for Navigation of Miniature Legged Robots

  • Conference paper
  • First Online:
2016 International Symposium on Experimental Robotics (ISER 2016)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 1))

Included in the following conference series:

Abstract

This paper provides experimental evidence in support of the hypothesis that the Switching Four-bar Mechanism (SFM) model may serve as a template for miniature legged systems in quasi-static operation. The evidence suggests that the SFM captures salient motion behaviors of morphologically distinct centimeter-scale legged robots. Captured behaviors are then used for planning and control at small scales, thus demonstrating the practical utility of the SFM in navigation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to symmetry, the above description holds for the left pair by replacing indices \(\text {1}\) and \(\text {2}\) with indices 3 and 4, respectively.

  2. 2.

    In fact, a duration of 3 s turns out to be a good trade-off between path dispersion, and length which affects the overall computationally complexity; see [12].

  3. 3.

    The number of steps has been chosen empirically to provide adequate resolution for the touchdown and liftoff configurations in 3 sec-long experimental data.

References

  1. Spence, A., Revzen, S., Seipel, J.E., Mullens, C., Full, R.J.: Insects running on elastic surfaces. J. Exp. Biol. 213, 1907–1920 (2010)

    Article  Google Scholar 

  2. Qian, F., Zhang, T., Li, C., Masarati, P., Hoover, A., Birkmeyer, P., Pullin, A., Fearing, R.S., Goldman, D.I.: Walking and running on yielding and fluidizing ground. In: Robotics: Science and Systems (2012)

    Google Scholar 

  3. Aguilar, J., Zhang, T., Qian, F., Kingsbury, M., McInroe, B., Mazouchova, N., Li, C., Maladen, R., Gong, C., Travers, M., Hatton, R., Choset, H., Umbanhowar, P., Goldman, D.: A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. Rep. Prog. Phys. 79(11), 35pp (2016). 110001

    Google Scholar 

  4. Full, R., Koditschek, D.: Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202, 3325–3332 (1999)

    Google Scholar 

  5. Blickhan, R., Full, R.J.: Similarity in multilegged locomotion: bouncing like a monopode. J. Comp. Physiol. Neuroethol. Sens. Neural Behav. Physiol. 173, 509–517 (1993)

    Google Scholar 

  6. Holmes, P., Full, R.J., Koditschek, D.E., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses, and challenges. SIAM Review 48(2), 207–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Seipel, J.E., Holmes, P.J., Full, R.J.: Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions. Biol. Cybern. 91(2), 76–90 (2004)

    Article  MATH  Google Scholar 

  8. Jindrich, D., Full, R.: Many-legged maneuverability: dynamics of turning in hexapods. J. Exp. Biol. 202, 1603–1623 (1999)

    Google Scholar 

  9. Proctor, J., Holmes, P.: Steering by transient destabilization in piecewise-holonomic models of legged locomotion. Regul. Chaotic Dyn. 13(4), 267–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zarrouk, D., Fearing, R.S.: Controlled in-plane locomotion of a hexapod using a single actuator. IEEE Trans. Robot. 31(1), 157–167 (2015)

    Article  Google Scholar 

  11. Hoover, A.M., Burden, S., Fu, X.-Y., Sastry, S., Fearing, R.S.: Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot. In: IEEE International Conference on Biomedical Robotics and Biomechatronics, pp. 869–876 (2010)

    Google Scholar 

  12. Karydis, K., Liu, Y., Poulakakis, I., Tanner, H.G.: A template candidate for miniature legged robots in quasi-static motion. Auton. Robots 38(2), 193–209 (2015)

    Article  Google Scholar 

  13. Pullin, A., Kohut, N., Zarrouk, D., Fearing, R.S.: Dynamic turning of 13 cm robot comparing tail and differential drive. In: IEEE International Conference on Robotics and Automation, pp. 5086–5093 (2012)

    Google Scholar 

  14. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  15. Mongeau, J.-M., McRae, B., Jusufi, A., Birkmeyer, P., Hoover, A.M., Fearing, R.S., Full, R.J.: Rapid inversion: running animals and robots swing like a pendulum under ledges. PLoS ONE 7(6), e38003 (2012)

    Article  Google Scholar 

  16. Li, C., Pullin, A.O., Haldane, D.W., Lam, H.K., Fearing, R.S., Full, R.J.: Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain. Bioinspir. Biomim. 10(4), 046003 (2015)

    Article  Google Scholar 

  17. Mathis, A., Russell, J., Moore, T., Cohen, J., Satterfield, B., Kohut, N., Fu, X., Fearing, R.S.: Autonomous navigation of a 5 gram crawling millirobot in a complex environment. In: Adaptive Mobile Robotics: 15th International Conference on Climbing & Walking Robots & the Support Technologies for Mobile Machines, pp. 121–128 (2012)

    Google Scholar 

  18. Karydis, K., Zarrouk, D., Poulakakis, I., Fearing, R.S., Tanner, H.G.: Planning with the STAR(s). In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3033–3038 (2014)

    Google Scholar 

  19. Karydis, K.: “A data-driven hierarchical framework for planning, navigation, and control of uncertain systems: Applications to miniature legged robots,” Ph.D. dissertation, University of Delaware (2015)

    Google Scholar 

  20. Karydis, K., Liu, Y., Poulakakis, I., Tanner, H.G.: Navigation of miniature legged robots using a new template. In: 23rd Mediterranean Conference on Control and Automation, pp. 1112–1117 (2015)

    Google Scholar 

  21. Karydis, K., Valbuena, L., Tanner, H.G.: Model predictive navigation for position and orientation control of nonholonomic vehicles. In: IEEE International Conference on Robotics and Automation, pp. 3206–3211 (2012)

    Google Scholar 

  22. Karydis, K., Poulakakis, I., Sun, J., Tanner, H.G.: Probabilistically valid stochastic extensions of deterministic models for systems with uncertainty. Int. J. Robot. Res. 34(10), 1278–1295 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by NSF under grant IIS-1350721, and by ARL MAST CTA \(\#\) W911NF-08-2-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Karydis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Karydis, K., Stager, A., Tanner, H.G., Poulakakis, I. (2017). Experimental Validation of a Template for Navigation of Miniature Legged Robots. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50115-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50114-7

  • Online ISBN: 978-3-319-50115-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics