Skip to main content

Using Dense 3D Reconstruction for Visual Odometry Based on Structure from Motion Techniques

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10073))

Included in the following conference series:

  • 1819 Accesses

Abstract

Aim of intense research in the field computational vision, dense 3D reconstruction achieves an important landmark with first methods running in real time with millimetric precision, using RGBD cameras and GPUs. However, these methods are not suitable for low computational resources. The goal of this work is to show a method of visual odometry using regular cameras, without using a GPU. The proposed method is based on techniques of sparse Structure from Motion (SFM), using data provided by dense 3D reconstruction. Visual odometry is the process of estimating the position and orientation of an agent (a robot, for instance), based on images. This paper compares the proposed method with the odometry calculated by Kinect Fusion. Odometry provided by this work can be used to model a camera position and orientation from dense 3D reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moravec, H.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Technical report, Carnegie Mellon University, CMU-RI-TR-80-03 Document (1980)

    Google Scholar 

  2. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3-D Vision: From Images to Geometric Models, vol. 26. Springer Science & Business Media, New York (2001)

    MATH  Google Scholar 

  3. Davison, A., Reid, I., Molton, N., Stasse, O.: Monoslam: real-time single camera slam. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  4. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR, pp. 225–234 (2007)

    Google Scholar 

  5. Grisetti, G., Kummerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based slam. Intell. Transp. Syst. Mag. IEEE 2(4), 31–43 (2010)

    Article  Google Scholar 

  6. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST, pp. 559–568, NY, USA (2011)

    Google Scholar 

  7. Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. Robot. Autom. Mag. IEEE 18(4), 80–92 (2011)

    Article  Google Scholar 

  8. Nister D., Naroditsky O., Bergen, J.: Visual odometry. In: Proceedings of IEEE Computer Society Conference Computer Vision and Pattern Recognition, CVPR, vol. 1, pp. I–652 (2004)

    Google Scholar 

  9. Harris, C., Pike, J.: 3d positional integration from image sequences. Image Vis. Comput. 6(2), 87–90 (1988)

    Article  Google Scholar 

  10. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). doi:10.1007/11744023_34

    Chapter  Google Scholar 

  11. Bay, H., Tuytelaars, T., Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi:10.1007/11744023_32

    Chapter  Google Scholar 

  12. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517 (2012)

    Google Scholar 

  13. Hartley, R., Sturm, P.: Triangulation. Comput. Vis. Image Underst. 68(2), 146–157 (1997)

    Article  Google Scholar 

  14. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  15. Besl, P., McKay, N.A.: Method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  16. Newcombe, R., Lovegrove, S., Dtam, D.A.: Dense tracking and mapping in real-time. In: IEEE International Conference on ICCV, pp. 2320–2327 (2011)

    Google Scholar 

  17. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: IEEE International Conference on Robotics and Automation, pp. 2724–2729 (1991)

    Google Scholar 

  18. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

  19. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  20. Blanco, J.L.: A tutorial on SE(3) transformation parameterizations and on-manifold optimization (2014)

    Google Scholar 

  21. Agarwal, S., Mierle, K., et al.: Ceres solver (2016). http://ceres-solver.org

  22. Wikipedia: Automatic differentiation (2016) http://en.wikipedia.org/wiki/Automatic_differentiation

  23. Blanco, J.L.: Mobile Robot Programming Toolkit (MRPT) (2016). http://www.mrpt.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Eduardo Loaiza Fernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

de Mattos Nascimento, M., Fernandez, M.E.L., Raposo, A.B. (2016). Using Dense 3D Reconstruction for Visual Odometry Based on Structure from Motion Techniques. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10073. Springer, Cham. https://doi.org/10.1007/978-3-319-50832-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50832-0_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50831-3

  • Online ISBN: 978-3-319-50832-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics