Skip to main content

Atomic Scale Friction Phenomena

  • Chapter
  • First Online:
Nanotribology and Nanomechanics

Abstract

Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 25 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact. We will begin by introducing friction force microscopy, including the calibration of cantilever force sensors and special aspects of the ultrahigh vacuum environment. The empirical Prandtl-Tomlinson model often used to describe atomic stick-slip results is therefore presented in detail. We review experimental results regarding atomic friction, including thermal activation, velocity dependence and temperature dependence. The geometry of the contact is crucial to the interpretation of experimental results, such as the calculation of the lateral contact stiffness . The onset of wear on the atomic scale has recently been studied experimentally and it is described here. The chapter ends with a discussion of recent experiments aimed to detect the dissipative forces acting when a sharp tip is moved parallel and very close to a solid surface without being in contact with it, or when small entities such as single polymer chains, graphene nanoribbons or large organic molecules are manipulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht TR, Grütter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668

    Article  Google Scholar 

  • Bardeen J, Cooper LN, Schrieffer JR (1957) Theory of Superconductivity. Phys Rev 108:1175

    Article  MathSciNet  MATH  Google Scholar 

  • Barel I, Urbakh M, Jansen L, Schirmeisen A (2010) Multibond dynamics of nanoscale friction: the role of temperature. Phys Rev Lett 104:066104

    Article  Google Scholar 

  • Benassi A, Vanossi A, Santoro GE, Tosatti E (2011) Sliding over a phase transition. Phys Rev Lett 106:256102

    Article  Google Scholar 

  • Bennewitz R, Gyalog T, Guggisberg M, Bammerlin M, Meyer E, Güntherodt H-J (1999) Atomic-scale stick-slip processes on Cu(111). Phys Rev B 60:R11301–R11304

    Article  Google Scholar 

  • Bennewitz R, Foster AS, Kantorovich LN, Bammerlin M, Loppacher C, Schär S, Guggisberg M, Meyer E, Shluger AL (2000) Atomically resolved edges and kinks of NaCl islands on Cu(111): experiment and theory. Phys Rev B 62:2074–2084

    Article  Google Scholar 

  • Bennewitz R, Schär S, Barwich V, Pfeiffer O, Meyer E, Krok F, Such B, Kolodzej J, Szymonski M (2001) Atomic-resolution images of radiation damage in KBr. Surf Sci 474:197–202

    Article  Google Scholar 

  • Bouhacina T, Aimé JP, Gauthier S, Michel D, Heroguez V (1997) Tribological behavior of a polymer grafted on silanized silica probed with a nanotip. Phys Rev B 56:7694–7703

    Article  Google Scholar 

  • Bowden FP, Tabor FP (1950) The friction and lubrication of solids. Oxford Univ. Press, Oxford

    MATH  Google Scholar 

  • Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic-force microscopy. Nanotechnology 6:1–7

    Article  Google Scholar 

  • Carpick RW, Agraït N, Ogletree DF, Salmeron M (1996) Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J Vac Sci Technol, B 14:1289–1295

    Article  Google Scholar 

  • Carpick RW, Ogletree DF, Salmeron M (1997) Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett 70:1548–1550

    Article  Google Scholar 

  • Cleveland J, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405

    Article  Google Scholar 

  • Denk W, Pohl DW (1991) Local electrical dissipation imaged by scanning force microscopy. Appl Phys Lett 59:2171–2173

    Article  Google Scholar 

  • Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on adhesion of particles. J Colloid Interface Sci 53:314–326

    Article  Google Scholar 

  • Dienwiebel M, Verhoeven G, Pradeep N, Frenken J, Heimberg J, Zandbergen H (2004) Superlubricity of graphite. Phys Rev Lett 92:126101

    Article  Google Scholar 

  • Edwards SA, Ducker WA, Sader JE (2008) Influence of atomic force microscope cantilever tilt and induced torque on force measurements. J Appl Phys 103:064513

    Article  Google Scholar 

  • Emmrich M, Schneiderbauer F, Huber AJ, Weymouth N, Okabayashi FJ (2015) Giessibl Force field analysis suggests a ñlowering of diffusion barriers in atomic manipulation due to presence of STM tip. Phys Rev Lett 114:146101

    Article  Google Scholar 

  • Enachescu M, van den Oetelaar RJA, Carpick RW, Ogletree DF, Flipse CFJ, Salmeron M (1998) Atomic force microscopy study of an ideally hard contact: the diamond(111)/tungsten carbide interface. Phys Rev Lett 81:1877–1880

    Article  Google Scholar 

  • Enachescu M, van den Oetelaar RJA, Carpick RW, Ogletree DF, Flipse CFJ, Salmeron M (1999) Observation of proportionality between friction and contact area at the nanometer scale. Tribol Lett 7:73–78

    Article  Google Scholar 

  • Fessler G, Zimmermann I, Glatzel T, Gnecco E, Steiner P, Roth R, Keene TD, Liu SX, Decurtins S, Meyer E (2011) Orientation dependent molecular friction on organic layer compound crystals. Appl Phys Lett 98:083119

    Article  Google Scholar 

  • Filleter T, Bennewitz R (2010) Structural and frictional properties of graphene lms on SiC(0001) studied by atomic force microscopy. Phys Rev B 81:155412

    Article  Google Scholar 

  • Filleter T, Paul W, Bennewitz R (2008) Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys Rev B 77:035430

    Article  Google Scholar 

  • Fournier N, Wagner C, Weiss C, Temirov R, Tautz FS (2011) Force-controlled lifting of molecular wires. Phys Rev B 84:035435

    Article  Google Scholar 

  • Fujisawa S, Kishi E, Sugawara Y, Morita S (1995) Atomic-scale friction observed with a two-dimensional frictional-force microscope. Phys Rev B 51:7849–7857

    Article  Google Scholar 

  • Fusco C, Fasolino A (2005) Velocity dependence of atomic-scale friction: a comparative study of the one- and two-dimensional Tomlinson model. Phys. Rev. B 71:45413

    Article  Google Scholar 

  • Gnecco E (2010) Quasi-isotropy of static friction on hexagonal surface lattices. Europhys Lett 91:66008

    Article  Google Scholar 

  • Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M, Meyer E, Güntherodt H-J (2000) Velocity dependence of atomic friction. Phys Rev Lett 84:1172–1175

    Article  Google Scholar 

  • Gnecco E, Bennewitz R, Meyer E (2002) Abrasive wear on the atomic scale. Phys Rev Lett 88:215501

    Article  Google Scholar 

  • Gnecco E, Roth R, Baratoff A (2012) Analytical expressions for the kinetic friction in the Prandtl-Tomlinson model. Phys Rev B 86:035443

    Article  Google Scholar 

  • Goryl M, Budzioch J, Krok F, Wojtaszek M, Kolmer M, Walczak L, Konior J, Gnecco E, Szymonski M (2012) Probing atomic-scale friction on reconstructed surfaces of single-crystal semiconductors. Phys Rev B 85:085308

    Article  Google Scholar 

  • Gotsmann B (2011) Tribology: sliding on vacuum. Nat Mater 10:87–88

    Article  Google Scholar 

  • Gotsmann B, Seidel C, Anczykowski B, Fuchs H (1999) Conservative and dissipative tip–sample interaction forces probed with dynamic AFM. Phys Rev B 60:11051–11061

    Article  Google Scholar 

  • Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc Lond A 295:300

    Article  Google Scholar 

  • Guggisberg M, Bammerlin M, Baratoff A, Lüthi R, Loppacher C, Battiston FM, Lü J, Bennewitz R, Meyer E, Güntherodt HJ (2000) Dynamic force microscopy across steps on the Si(111)-(7 × 7) surface. Surf Sci 461:255–265

    Article  Google Scholar 

  • Gyalog T, Thomas H (1997) Friction between atomically flat surfaces. Europhys Lett 37:195–200

    Article  Google Scholar 

  • Gyalog T, Bammerlin M, Lüthi R, Meyer E, Thomas H (1995) Mechanism of atomic friction. Europhys Lett 31:269–274

    Article  Google Scholar 

  • Howald L, Meyer E, Lüthi R, Haefke H, Overney R, Rudin H, Güntherodt H-J (1993) Multifunctional probe microscope for facile operation in ultrahigh vacuum. Appl Phys Lett 63:117–119

    Article  Google Scholar 

  • Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    Article  Google Scholar 

  • Israelachvili JN, Tabor D (1972) Measurement of van der Waals dispersion forces in range 1.5 to 130 nm. Proc R Soc Lond A 331:19

    Google Scholar 

  • Jacobs TDB, Carpick R (2013) Nanoscale wear as a stress-assisted chemical reaction. Nat Mater 8:108

    Google Scholar 

  • Jansen L, Hölscher H, Fuchs H, Schirmeisen A (2010) Temperature dependence of atomic-scale stick-slip friction. Phys Rev Lett 104:256101

    Article  Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge Univ. Press, Cambridge

    Book  MATH  Google Scholar 

  • Johnson KL, Kendall K, Roberts AD (1971) Surface energy and contact of elastic solids. Proc R Soc Lond A 324:301

    Google Scholar 

  • Kawai S, Koch M, Gnecco E, Sadeghi A, Pawlak R, Glatzel T, Schwarz J, Goedecker S, Hecht S, Baratoff A, Meyer E (2014) Quantifying the atomic-level mechanics of single long physisorbed molecular chains. Proc Natl Acad Sci USA 111:3968–3972

    Article  Google Scholar 

  • Kawai S, Benassi A, Gnecco E, Söde H, Pawlak R, Feng X, Müllen K, Passerone D, Pignedoli CA, Ruffieux P, Fasel R, Meyer E (2016) Superlubricity of graphene nanoribbons on gold surfaces. Science 351:957

    Article  Google Scholar 

  • Kawakatsu H, Saito T (1996) Scanning force microscopy with two optical levers for detection of deformations of the cantilever. J Vac Sci Technol, B 14:872–876

    Article  Google Scholar 

  • Kisiel M, Gnecco E, Gysin U, Marot L, Rast S, Meyer E (2011) Suppression of electronic friction on Nb films in the superconducting state. Nat Mater 10:119

    Article  Google Scholar 

  • Kisiel M, Pellegrini F, Santoro GE, Samadashvili M, Pawlak R, Benassi A, Gysin U, Buzio R, Gerbi A, Meyer E, Tosatti E (2015) Noncontact atomic force microscope dissipation reveals a Central peak of SrTiO3 structural phase transition. Phys Rev Lett 115:046101

    Article  Google Scholar 

  • Kopta S, Salmeron M (2000) The atomic scale origin of wear on mica and its contribution to friction. J Chem Phys 113:8249–8252

    Article  Google Scholar 

  • Krylov SY, Jinesh KB, Valk H, Dienwiebel M, Frenken JWM (2005) Thermally induced suppression of friction at the atomic scale. Phys Rev E 71:65101

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1998) Introduction to theoretical physics, vol 7. Nauka, Moscow

    Google Scholar 

  • Langer M, Kisiel M, Pawlak R, Pellegrini F, Santoro GE, Buzio R, Gerbi A, Balakrishnan G, Baratoff A, Tosatti E, Meyer E (2013) Giant frictional dissipation peaks and charge-density-wave slips at the NbSe2 surface. Nat Mater 13:173

    Article  Google Scholar 

  • Lantz MA, O’Shea SJ, Welland ME, Johnson KL (1997) Atomic-force-microscope study of contact area and friction on NbSe_2. Phys Rev B 55:10776–10785

    Article  Google Scholar 

  • Linnemann R, Gotszalk T, Rangelow IW, Dumania P, Oesterschulze E (1996) Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers. J Vac Sci Technol, B 14:856–860

    Article  Google Scholar 

  • Loppacher C, Bennewitz R, Pfeiffer O, Guggisberg M, Bammerlin M, Schär S, Barwich V, Baratoff A, Meyer E (2000) Experimental aspects of dissipation force microscopy. Phys Rev B 62:13674–13679

    Article  Google Scholar 

  • Maier S, Sang Y, Filleter T, Grant M, Bennewitz R, Gnecco E, Meyer E (2005) Fluctuations and jump dynamics in atomic friction experiments. Phys Rev B 72:245418

    Article  Google Scholar 

  • Maier S, Gnecco E, Baratoff A, Meyer E (2008) Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments. Phys Rev B 78:045432

    Article  Google Scholar 

  • Marti O, Colchero J, Mlynek J (1990) Combined scanning force and friction microscopy of mica. Nanotechnology 1:141–144

    Article  Google Scholar 

  • Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59:1942–1945

    Article  Google Scholar 

  • Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J Colloid Interface Sci 150:243–269

    Article  Google Scholar 

  • McClelland GM, Glosli JN (1992) Friction at the atomic scale. In: Singer L, Pollock HM (eds) NATO ASI Series E, vol 220. Kluwer, Dordrecht, pp 405–425

    Google Scholar 

  • Meyer G, Amer N (1990) Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl Phys Lett 57:2089–2091

    Article  Google Scholar 

  • Meyer E, Lüthi R, Howald L, Bammerlin M, Guggisberg M, Güntherodt H-J (1996) Site-specific friction force spectroscopy. J Vac Sci Technol, B 14:1285–1288

    Article  Google Scholar 

  • Müser MH (2004) Structural lubricity: role of dimension and symmetry. Europhys Lett 66:97

    Article  Google Scholar 

  • Müser MH, Robbins MO (2000) Conditions for static friction between flat crystalline surfaces. Phys Rev B 61:2335

    Article  Google Scholar 

  • Neubauer G, Cohen SR, McClelland GM, Horn DE, Mate CM (1990) Force microscopy with a bidirectional capacitance sensor. Rev Sci Instrum 61:2296–2308

    Article  Google Scholar 

  • Neumeister JM, Ducker WA (1994) Lateral, normal, and longitudinal spring constants of atomic-force microscopy cantilevers. Rev Sci Instrum 65:2527–2531

    Article  Google Scholar 

  • Nita P, Casado S, Dietzel D, Schirmeisen A, Gnecco E (2013) Spinning and translational motion of Sb nanoislands manipulated on MoS2. Nanotechnol 24:325302

    Google Scholar 

  • Nonnenmacher M, Greschner J, Wolter O, Kassing R (1991) Scanning force microscopy with micromachined silicon sensors. J Vac Sci Technol, B 9:1358–1362

    Article  Google Scholar 

  • Ogletree DF, Carpick RW, Salmeron M (1996) Calibration of frictional forces in atomic force microscopy. Rev Sci Instrum 67:3298–3306

    Article  Google Scholar 

  • Pawlak R, Ouyang W, Filippov AE, Kalikhman-Razvozov L, Kawai S, Glatzel T, Gnecco E, Baratoff A, Zheng Q-S, Hod O, Urbakh M, Meyer E (2016) Single molecule tribology: force microscopy manipulation of a porphyrin derivative on a copper surface. ACS Nano 10:713–722

    Article  Google Scholar 

  • Pellegrini F, Santoro GE, Tosatti E (2014) Charge-density-wave surface phase slips and noncontact nanofriction. Phys Rev B 89:245416

    Article  MATH  Google Scholar 

  • Persson BNJ (2001) Elastoplastic contact between randomly rough surfaces. Phys Rev Lett 87:116101

    Article  Google Scholar 

  • Pfeiffer O, Bennewitz R, Baratoff A, Meyer E, Grütter P (2002) Lateral-force measurements in dynamic force microscopy. Phys Rev B 65:161403

    Article  Google Scholar 

  • Pina CM, Miranda R, Gnecco E (2012) Anisotropic surface coupling while sliding on dolomite and calcite crystals. Phys Rev B 85:073402

    Article  Google Scholar 

  • Polaczyk C, Schneider T, Schöfer J, Santner E (1998) Microtribological behavior of Au(001) studied by AFM/FFM. Surf Sci 402:454–458

    Article  Google Scholar 

  • Prandtl L (1928) A conceptual model for the kinetic theory of solids (in German). Z Angew Math Mech 8:85

    Article  Google Scholar 

  • Riedo E, Lévy F, Brune H (2002) Kinetics of capillary condensation in nanoscopic sliding friction. Phys Rev Lett 88:185505

    Article  Google Scholar 

  • Roth R, Glatzel T, Steiner P, Gnecco E, Baratoff A, Meyer E (2010) Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Tribol Lett 39:63

    Article  Google Scholar 

  • Roth R, Fajardo OY, Mazo JJ, Meyer E, Gnecco E (2014) Lateral vibration effects in atomic-scale friction. Appl Phys Lett 104:083103

    Article  Google Scholar 

  • Sader JE, Green CP (2004) In-plane deformation of cantilever plates with applications to lateral force microscopy. Rev Sci Instrum 75:878–883

    Article  Google Scholar 

  • Sang Y, Dubé M, Grant M (2001) Thermal effects on atomic friction. Phys Rev Lett 87:174301

    Article  Google Scholar 

  • Schwarz UD, Köster P, Wiesendanger R (1996) Quantitative analysis of lateral force microscopy experiments. Rev Sci Instrum 67:2560–2567

    Article  Google Scholar 

  • Schwarz UD, Zwörner O, Köster P, Wiesendanger R (1997) Quantitative analysis of the frictional properties of solid materials at low loads. Phys Rev B 56:6987–6996

    Article  Google Scholar 

  • Socoliuc A, Bennewitz R, Gnecco E, Meyer E (2004) Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction. Phys Rev Lett 92:134301

    Article  Google Scholar 

  • Socoliuc A, Gnecco E, Maier S, Pfeiffer O, Baratoff A, Bennewitz R, Meyer E (2006) Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313:207–210

    Article  Google Scholar 

  • Steele WA (1973) The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms. Surf Sci 36:317

    Article  Google Scholar 

  • Steiner P, Roth R, Gnecco E, Glatzel T, Baratoff A, Meyer E (2009) Modulation of contact resonance frequency accompanying atomic-scale stickslip in friction force microscopy. Nanotechnology 20:495701

    Google Scholar 

  • Steiner P, Roth R, Gnecco E, Baratoff A, Meyer E (2010) Angular dependence of static and kinetic friction on alkali halide surfaces. Phys Rev B 82:205417

    Article  Google Scholar 

  • Steiner P, Gnecco E, Krok F, Budzioch J, Walczak L, Konior J, Szymonski M, Meyer E (2011) Atomic-scale friction on stepped surfaces of ionic crystals. Phys Rev Lett 106:186104

    Article  Google Scholar 

  • Stipe BC, Mamin HJ, Stowe TD, Kenny TW, Rugar D (2001) Noncontact friction and force fluctuations between closely spaced bodies. Phys Rev Lett 87:96801

    Article  Google Scholar 

  • Stowe TD, Kenny TW, Thomson J, Rugar D (1999) Silicon dopant imaging by dissipation force microscopy. Appl Phys Lett 75:2785–2787

    Article  Google Scholar 

  • Tabor D (1977) Surface forces and surface interactions. J Colloid Interface Sci 58:2–13

    Article  Google Scholar 

  • Ternes M, Lutz CP, Hirjibehedin CF, Giessibl FJ, Heinrich AJ (2008) The force needed to move an atom. Science 319:1066–1069

    Article  Google Scholar 

  • Vilhena G, Pimentel C, Pedraz P, Luo F, Serena PA, Pina CM, Gnecco E, Perez R (2016) Atomic-scale sliding friction on grapheme in water. ACS Nano 10:4288–4293

    Article  Google Scholar 

  • Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102:425–454

    Article  Google Scholar 

  • Wagner C, Fournier N, Tautz FS, Temirov R (2014) The role of surface corrugation and tip oscillation in single-molecule manipulation with non-contact atomic force microscope. Beilstein J Nanotechnol 5:202–209

    Article  Google Scholar 

  • Weiss M, Elmer FJ (1996) Dry friction in the Frenkel–Kontorova–Tomlinson model: Static properties. Phys Rev B 53:7539–7549

    Article  Google Scholar 

  • Zhao X, Hamilton M, Sawyer WG, Perry SS (2007) Thermally activated friction. Tribol Lett 27:113–117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Gnecco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gnecco, E., Pawlak, R., Kisiel, M., Glatzel, T., Meyer, E. (2017). Atomic Scale Friction Phenomena. In: Bhushan, B. (eds) Nanotribology and Nanomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-51433-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51433-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51432-1

  • Online ISBN: 978-3-319-51433-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics