Skip to main content

Use of Xenopus Frogs to Study Renal Development/Repair

  • Chapter
  • First Online:
Kidney Development and Disease

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 60))

Abstract

The Xenopus genus includes several members of aquatic frogs native to Africa but is perhaps best known for the species Xenopus laevis and Xenopus tropicalis. These species were popularized as model organisms from as early as the 1800s and have been instrumental in expanding several biological fields including cell biology, environmental toxicology, regenerative biology, and developmental biology. In fact, much of what we know about the formation and maturation of the vertebrate renal system has been acquired by examining the intricate genetic and morphological patterns that epitomize nephrogenesis in Xenopus. From these numerous reports, we have learned that the process of kidney development is as unique among organs as it is conserved among vertebrates. While development of most organs involves increases in size at a single location, development of the kidney occurs through a series of three increasingly complex nephric structures that are temporally distinct from one another and which occupy discrete spatial locales within the body. These three renal systems all serve to provide homeostatic, osmoregulatory, and excretory functions in animals. Importantly, the kidneys in amphibians, such as Xenopus, are less complex and more easily accessed than those in mammals, and thus tadpoles and frogs provide useful models for understanding our own kidney development. Several descriptive and mechanistic studies conducted with the Xenopus model system have allowed us to elucidate the cellular and molecular mediators of renal patterning and have also laid the foundation for our current understanding of kidney repair mechanisms in vertebrates. While some species-specific responses to renal injury have been observed, we still recognize the advantage of the Xenopus system due to its distinctive similarity to mammalian wound healing, reparative, and regenerative responses. In addition, the first evidence of renal regeneration in an amphibian system was recently demonstrated in Xenopus laevis. As genetic and molecular tools continue to advance, our appreciation for and utilization of this amphibian model organism can only intensify and will certainly provide ample opportunities to further our understanding of renal development and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armstrong PB (1932) The embryonic origin of function in the pronephros through differentiation and parenchyma-vascular association. Am J Anat 51:157–188

    Article  Google Scholar 

  • Aronson PS (1989) The renal proximal tubule: a model for diversity of anion exchangers and stilbene-sensitive anion transporters. Annu Rev Physiol 51:419–441

    Article  CAS  PubMed  Google Scholar 

  • Attia L, Yelin R, Schultheiss TM (2012) Analysis of nephric duct specification in the avian embryo. Development 139:4143–4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augusto J, Smith B, Smith S, Robertson J, Reimschuessel R (1996) Gentamicin-induced nephrotoxicity and nephroneogenesis in Oreochromis nilotica, a tilapian fish. Dis Aquat Org 26:49–58

    Article  CAS  Google Scholar 

  • Babaeva AG (1964) Regeneration of the kidney in the red-bellied toad (Bombina bombina). Bull Exp Biol Med 57:99–103

    Article  CAS  Google Scholar 

  • Balinsky JB, Baldwin E (1961) The mode of excretion of ammonia and urea in Xenopus laevis. J Exp Biol 38:695–705

    Article  CAS  Google Scholar 

  • Barch SH, Shaver JR, Wilson GB (1966) An electron microscopic study of the nephric unit in the frog. Trans Am Microsc Soc 85:350–359

    Article  CAS  PubMed  Google Scholar 

  • Barker N, De Wetering MV, Clevers H (2008) The intestinal stem cell. Genes Dev 22:1856–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck CW, Christen B, Slack JMW (2003) Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev Cell 5:429–439

    Article  CAS  PubMed  Google Scholar 

  • Beck CW, Izpisúa Belmont JC, Christen B (2009) Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 238:1226–1248

    Article  CAS  PubMed  Google Scholar 

  • Becker JL, Miller F, Nuovo GJ, Josepovitz C, Schubach WH, Nord EP (1999) Epstein-Barr virus infection of renal proximal tubule cells: possible role in chronic interstitial nephritis. J Clin Invest 104:1673–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengatta S, Arnould C, Letavernier E, Monge M, De Préneuf HM, Werb Z, Ronco P, Lelongt B (2009) MMP9 and SCF protect from apoptosis in acute kidney injury. J Am Soc Nephrol 20:787–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardini S, Gargioli C, Cannata SM, Filoni S (2010) Neurogenesis during optic tectum regeneration in Xenopus laevis. Develop Growth Differ 52:365–376

    Article  Google Scholar 

  • Bertolotti E, Malagoli D, Franchini A (2013) Skin wound healing in different aged Xenopus laevis. J Morphol 274:956–964

    Article  CAS  PubMed  Google Scholar 

  • Bettencourt-Dias M, Mittnacht S, Brockes JP (2003) Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J Cell Sci 116:4001–4009

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum KD, Sánchez Alvarado A (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132:697–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bode HR (2003) Head regeneration in hydra. Dev Dyn 226:225–236

    Article  PubMed  Google Scholar 

  • Bonasio R (2015) The expanding epigenetic landscape of non-model organisms. J Exp Biol 218:114–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonventre JV (2003) Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 14:S55–S61

    Article  PubMed  Google Scholar 

  • Boti Z, Kobor J, Ormos J (1982) Activity of glucose-6-phosphatase in regenerating tubular epithelium in rat kidney after necrosis induced with mercuric chloride: A light and electronmicroscopical study. Br J Exp Pathol 63:615–624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brändli AW (1999) Towards a molecular anatomy of the Xenopus pronephric kidney. Int J Dev Biol 43:381–395

    PubMed  Google Scholar 

  • Bremer JL (1916) The interrelations of the mesonephros, kidney and placenta in different classes of animals. Am J Anat 19:179–209

    Article  Google Scholar 

  • Brennan HC, Nijjar S, Jones EA (1998) The specification of the pronephric tubules and duct in Xenopus laevis. Mech Dev 75:127–137

    Article  CAS  PubMed  Google Scholar 

  • Brockes JP, Kumar A (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol 3:566–574

    Article  CAS  PubMed  Google Scholar 

  • Bryant PJ (1971) Regeneration and duplication following operations in situ on the imaginal discs of Drosophila melanogaster. Dev Biol 26:637–651

    Article  CAS  PubMed  Google Scholar 

  • Caine ST, McLaughlin KA (2013) Regeneration of functional pronephric proximal tubules after partial nephrectomy in Xenopus laevis. Dev Dyn 242:219–229

    Article  CAS  PubMed  Google Scholar 

  • Carinato ME, Walter BE, Henry JJ (2000) Xenopus laevis gelatinase B (Xmmp-9): development, regeneration, and wound healing. Dev Dyn 217:377–387

    Article  CAS  PubMed  Google Scholar 

  • Carlson BM (1978) Types of morphogenetic phenomena in vertebrate regenerating systems. Integr Comp Biol 18:869–882

    Google Scholar 

  • Carnevali MD, Bonasoro F, Lucca E, Thorndyke MC (1995) Pattern of cell proliferation in the early stages of arm regeneration in the feather star Antedon mediterranea. J Exp Zool 272:464–474

    Article  Google Scholar 

  • Carroll TJ, Vize PD (1999) Synergism between Pax-8 and lim-1 in embryonic kidney development. Dev Biol 214:46–59

    Article  CAS  PubMed  Google Scholar 

  • Carroll T, Wallingford J, Seufert D, Vize PD (1999a) Molecular regulation of pronephric development. Curr Top Dev Biol 44:67–100

    Article  CAS  PubMed  Google Scholar 

  • Carroll TJ, Wallingford JB, Vize PD (1999b) Dynamic patterns of gene expression in the developing pronephros of Xenopus laevis. Dev Genet 24:199–207

    Article  CAS  PubMed  Google Scholar 

  • Chan TC, Takahashi S, Asashima M (2000) A role for Xlim-1 in pronephros development in Xenopus laevis. Dev Biol 228:256–269

    Article  CAS  PubMed  Google Scholar 

  • Chopra DP, Simnett JD (1969) Changes in mitotic rate during compensatory renal growth in Xenopus laevis tadpoles after unilateral pronephrectomy. J Embryol Exp Morphol 21:539–548

    CAS  PubMed  Google Scholar 

  • Chopra DP, Simnett JD (1970) Stimulation of cell division in pronephros of embryonic grafts following partial nephrectomy in the host (Xenopus laevis). J Embryol Exp Morphol 24:525–533

    CAS  PubMed  Google Scholar 

  • Chopra DP, Simnett JD (1971) Stimulation of cell division in larval kidney (Xenopus laevis) by rat kidney antiserum. Exp Cell Res 64:396–402

    Article  CAS  PubMed  Google Scholar 

  • Christen B, Beck CW, Lombardo A, Slack JMW (2003) Regeneration-specific expression pattern of three posterior hox genes. Dev Dyn 226:349–355

    Article  CAS  PubMed  Google Scholar 

  • Christensen EI, Raciti D, Reggiani L, Verroust PJ, Brändli AW (2008) Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney. Pflugers Arch - Eur J Physiol 456:1163–1176

    Article  CAS  Google Scholar 

  • Chromek M, Tullus K, Hertting O, Jaremko G, Khalil A, Li Y, Brauner A (2003) Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinases-1 in acute pyelonephritis and renal scarring. Pediatr Res 53:698–705

    Article  CAS  PubMed  Google Scholar 

  • Cirio MC, Hui Z, Haldin CE, Cosentino CC, Stuckenholz C, Chen X, Hong S, Dawid IB, Hukriede NA (2011) Lhx1 is required for specification of the renal progenitor cell field. PLoS One 6:e18858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuppage FE, Tate A (1967) Repair of the nephron following injury with mercuric chloride. Am J Pathol 51:405–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuppage FE, Chiga M, Tate A (1972) Cell cycle studies in the regenerating rat nephron following injury with mercuric chloride. Lab Investig 26:122–126

    CAS  PubMed  Google Scholar 

  • Davidson AJ (2011) Uncharted waters: nephrogenesis and renal regeneration in fish and mammals. Pediatr Nephrol 26:1435–1443

    Article  PubMed  Google Scholar 

  • Davies JA, Fisher CE (2002) Genes and proteins in renal development. Exp Nephrol 10:102–113

    Article  CAS  PubMed  Google Scholar 

  • Dent JN (1962) Limb regeneration in larvae and metamorphosing individuals of the South African clawed toad. J Morphol 110:61–77

    Article  CAS  PubMed  Google Scholar 

  • Diep CQ, Ma D, Deo RC, Holm TM, Naylor RW, Arora N, Wingert RA, Bollig F, Djordjevic G, Lichman B, Zhu H, Ikenaga T, Ono F, Englert C, Cowan CA, Hukriede NA, Handin RI, Davidson AJ (2011) Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 470:95–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dor Y, Stanger BZ (2007) Regeneration in liver and pancreas: time to cut the umbilical cord? Sci STKE 414:pe66

    Google Scholar 

  • Drawbridge J, Meighan CM, Lumpkins R, Kite ME (2003) Pronephric duct extension in amphibian embryos: migration and other mechanisms. Dev Dyn 226:1–11

    Article  PubMed  Google Scholar 

  • Dressler GR (1996) Pax-2, kidney development, and oncogenesis. Med Pediatr Oncol 27:440–444

    Article  CAS  PubMed  Google Scholar 

  • Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    Article  CAS  PubMed  Google Scholar 

  • Drummond IA (2000) The zebrafish pronephros: a genetic system for studies of kidney development. Pediatr Nephrol 14:428–435

    Article  CAS  PubMed  Google Scholar 

  • Drummond IA, Davidson AJ (2010) Zebrafish kidney development. Methods Cell Biol 100:233–260

    Article  CAS  PubMed  Google Scholar 

  • Drummond IA, Majumdar A (2003) The pronephric glomus and vasculature. In: Vize PD, Woolf AS, Bard JBL (eds) The kidney: from normal development to congenital disease. Elsevier Science, San Diego, p 61

    Chapter  Google Scholar 

  • Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, Neuhauss SCF, Stemple DL, Zwartkruis F, Rangini Z, Driever W, Fishman MC (1998) Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125:4655–4667

    Article  CAS  PubMed  Google Scholar 

  • Du Pasquier L, Schwager J, Flajnik MF (1989) The immune system of Xenopus. Annu Rev Immunol 7:251–275

    Article  CAS  PubMed  Google Scholar 

  • Eid SR, Brändli AW (2001) Xenopus Na, K-ATPase: primary sequence of the β2 subunit and in situ localization of α1, β1, and γ expression during pronephric kidney development. Differentiation 68:115–125

    Article  CAS  PubMed  Google Scholar 

  • Elger M, Hentschel H, Litteral J, Wellner M, Kirsch T, Luft FC, Haller H (2003) Nephrogenesis is induced by partial nephrectomy in the elasmobranch Leucoraja erinacea. J Am Soc Nephrol 14:1506–1518

    Article  PubMed  Google Scholar 

  • Ellis LC, Youson JH (1989) Ultrastructure of the pronephric kidney in upstream migrant sea lamprey, Petromyzon marinus L. Am J Anat 185:429–443

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Yokoyama H, Tamura K, Ide H (1997) Shh expression in developing and regenerating limb buds of Xenopus laevis. Dev Dyn 209:227–232

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Tamura K, Ide H (2000) Analysis of gene expressions during Xenopus forelimb regeneration. Dev Biol 220:296–306

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Yoshino J, Kado K, Tochinai S (2007) Brain regeneration in anuran amphibians. Develop Growth Differ 49:121–129

    Article  Google Scholar 

  • Fedorova S, Miyamoto R, Harada T, Isogai S, Hashimoto H, Ozato K, Wakamatsu Y (2008) Renal glomerulogenesis in medaka fish, Oryzias latipes. Dev Dyn 237:2342–2352

    Article  PubMed  Google Scholar 

  • Ferretti P, Brockes JP, Brown R (1991) A newt type II keratin restricted to normal and regenerating limbs and tails is responsive to retinoic acid. Development 111:497–507

    Article  CAS  PubMed  Google Scholar 

  • Flajnik MF, Du Pasquier L (2004) Evolution of innate and adaptive immunity: can we draw a line? Trends Immunol 25:640–644

    Article  CAS  PubMed  Google Scholar 

  • Flink IL (2002) Cell cycle reentry of ventricular and atrial cardiomyocytes and cells within the epicardium following amputation of the ventricular apex in the axolotl, Amblystoma mexicanum: confocal microscopic immunofluorescent image analysis of bromodeoxyuridine-labeled nuclei. Anat Embryol 205:235–244

    Article  Google Scholar 

  • Fox H (1963) The amphibian pronephros. Q Rev Biol 38:1–25

    Article  CAS  PubMed  Google Scholar 

  • French V, Domican J (1982) The regeneration of supernumerary cockroach antennae. J Embryol Exp Morphol 67:153–165

    Google Scholar 

  • Frontera JL, Cervino AS, Jungblut LD, Paz DA (2015) Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis. Ann Anat 198:41–48

    Article  PubMed  Google Scholar 

  • Fukazawa T, Naora Y, Kunieda T, Kubo T (2009) Suppression of the immune response potentiates tadpole tail regeneration during the refractory period. Development 136:2323–2327

    Article  CAS  PubMed  Google Scholar 

  • Fukui L, Henry JJ (2011) FGF signaling is required for lens regeneration in Xenopus laevis. Biol Bull 221:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner DM, Carlson MRJ, Roy S (1999) Towards a functional analysis of limb regeneration. Semin Cell Dev Biol 10:385–393

    Article  CAS  PubMed  Google Scholar 

  • Gargioli C, Slack JMW (2004) Cell lineage tracing during Xenopus tail regeneration. Development 131:2669–2679

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Thorogood P, Ferretti P (1996) Regeneration of lower and upper jaws in urodeles is differentially affected by retinoic acid. Int J Dev Biol 40:1161–1170

    CAS  PubMed  Google Scholar 

  • Gobé GC, Buttyan R (2002) Apoptosis in the pathogenesis of renal disease with a focus on tubulointerstitial injury. Nephrology 7:287–293

    Article  Google Scholar 

  • Gobé GC, Buttyan R, Wyburn KRL, Etheridge MR, Smith PJ (1995) Clusterin expression and apoptosis in tissue remodeling associated with renal regeneration. Kidney Int 47:411–420

    Article  PubMed  Google Scholar 

  • Godwin JW, Rosenthal N (2014) Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success. Differentiation 87:66–75

    Article  CAS  PubMed  Google Scholar 

  • Goldin G, Fabian B (1978) The regulation of growth in the mesonephric kidney of adult Xenopus laevis by an endogenous inhibitor of proliferation. Dev Biol 66:529–538

    Article  CAS  PubMed  Google Scholar 

  • González-Avila G, Iturria C, Vadillo-Ortega F, Ovalle C, Montaño M (1998) Changes in matrix metalloproteinases during the evolution of interstitial renal fibrosis in a rat experimental model. Pathobiology 66:196–204

    Article  PubMed  Google Scholar 

  • Goyos A, Robert J (2009) Tumorigenesis and anti-tumor immune responses in Xenopus. Front Biosci 14:167–176

    Article  CAS  PubMed Central  Google Scholar 

  • Graver HT (1978) Re-regeneration of lower jaws and the dental lamina in adult urodeles. J Morphol 157:269–276

    Article  CAS  PubMed  Google Scholar 

  • Grow M, Neff AW, Mescher AL, King MW (2006) Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration. Dev Dyn 235:2667–2685

    Article  CAS  PubMed  Google Scholar 

  • Hamilton PW, Sun Y, Henry JJ (2016) Lens regeneration from the cornea requires suppression of Wnt/β-catenin signaling. Exp Eye Res 145:206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harty M, Neff AW, King MW, Mescher AL (2003) Regeneration or scarring: an immunologic perspective. Dev Dyn 226:268–279

    Article  PubMed  Google Scholar 

  • Hayashi S, Kawaguchi A, Uchiyama I, Kawasumi-Kita A, Kobayashi T, Nishide H, Tsutsumi R, Tsuru K, Inoue T, Ogino H, Agata K, Tamura K, Yokoyama H (2015) Epigenetic modification maintains intrinsic limb-cell identity in Xenopus limb bud regeneration. Dev Biol 406:271–282

    Article  CAS  PubMed  Google Scholar 

  • Heller N, Brändli AW (1997) Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development. Mech Dev 69:83–104

    Article  CAS  PubMed  Google Scholar 

  • Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak L, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the western clawed frog Xenopus tropicalis. Science 328:633–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensey C, Dolan V, Brady HR (2002) The Xenopus pronephros as a model system for the study of kidney development and pathophysiology. Nephrol Dial Transplant 17:73–74

    Article  CAS  PubMed  Google Scholar 

  • Hewitt IK, Zucchetta P, Rigon L, Maschio F, Molinari PP, Tomasi L, Toffolo A, Pavanello L, Crivellaro C, Bellato S, Montini G (2008) Early treatment of acute pyelonephritis in children fails to reduce renal scarring: data from the Italian renal infection study trials. Pediatrics 122:486–490

    Article  PubMed  Google Scholar 

  • Howland RB (1916) On the effect of removal of the pronephros of the amphibian embryo. Proc Natl Acad Sci USA 2:231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Ogawa R (2010) Mechanotransduction in bone repair and regeneration. FASEB J 24:3625–3632

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Chen M, Chiu N, Chou H, Lin K, Chiou Y (2011) Adjunctive oral methylprednisolone in pediatric acute pyelonephritis alleviates renal scarring. Pediatrics 128:e496–e504

    Article  PubMed  Google Scholar 

  • Humphreys BD, Duffield JS, Bonventre JV (2006) Renal stem cells in recovery from acute kidney injury. Minerva Urol Nefrol 58:329–337

    CAS  PubMed  Google Scholar 

  • Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291

    Article  CAS  PubMed  Google Scholar 

  • Imgrund M, Gröne E, Gröne H, Kretzler M, Holzman L, Schlöndorff D, Rothenpieler UW (1999) Re-expression of the developmental gene pax-2 during experimental acute tubular necrosis in mice. Kidney Int 56:1423–1431

    Article  CAS  PubMed  Google Scholar 

  • Imokawa Y, Brockes JP (2003) Selective activation of thrombin is a critical determinant for vertebrate lens regeneration. Curr Biol 13:877–881

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE, Levin M (2007) What lies at the interface of regenerative medicine and development? Development 134:2541–2547

    Article  CAS  PubMed  Google Scholar 

  • Ishizuya-Oka A (2007) Regeneration of the amphibian intestinal epithelium under the control of stem cell niche. Develop Growth Differ 49:99–107

    Article  Google Scholar 

  • Jaffee OC (1954) Morphogenesis of the pronephros of the leopard frog (Rana pipiens). J Morphol 95:109–123

    Article  Google Scholar 

  • Jaffee OC (1963) Cellular differentiation in the anuran pronephros. Anat Rec 145:179–182

    Article  CAS  PubMed  Google Scholar 

  • Jewhurst K, Levin M, McLaughlin KA (2014) Optogenetic control of apoptosis in targeted tissues of Xenopus laevis embryos. J Cell Death 13:25–31

    Google Scholar 

  • Jones EA (2005) Xenopus: A prince among models for pronephric kidney development. J Am Soc Nephrol 16:313–321

    Article  CAS  PubMed  Google Scholar 

  • Kardong KV (ed) (2014) Vertebrates: comparative anatomy, function, evolution, 7th edn. McGraw Hill Higher Education, Boston, 816 p

    Google Scholar 

  • Kays SE, Schnellmann RG (1995) Regeneration of renal proximal tubule cells in primary culture following toxicant injury: response to growth factors. Toxicol Appl Pharmacol 132:273–280

    Article  CAS  PubMed  Google Scholar 

  • King MW, Nguyen T, Calley J, Harty MW, Muzinich MC, Mescher AL, Chalfant C, N’Cho M, McLeaster K, McEntire J, Stocum D, Smith RC, Neff AW (2003) Identification of genes expressed during Xenopus laevis limb regeneration by using subtractive hybridization. Dev Dyn 226:398–409

    Article  CAS  PubMed  Google Scholar 

  • Kingsley JS (ed) (1917) Outlines of comparative anatomy of vertebrates, 2nd edn. Revised. P. Blakiston Son’s, Philadelphia, 449 p

    Google Scholar 

  • Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–4234

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi C, Watanabe K, Agata K (1999) The process of pharynx regeneration in planarians. Dev Biol 211:27–38

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR (2005) Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 132:2809–2823

    Article  CAS  PubMed  Google Scholar 

  • Kovacs CJ, Braunschweiger PG, Schenken LL, Burholt DR (1982) Proliferative defects in renal and intestinal epithelium after cis-dichlorodiammine platinum (II). Br J Cancer 45:286–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunugi S, Shimizu A, Kuwahara N, Du X, Takahashi M, Terasaki Y, Fujita E, Mii A, Nagasaka S, Akimoto T, Masuda Y, Fukuda Y (2011) Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury. Lab Investig 91:170–180

    Article  CAS  PubMed  Google Scholar 

  • Kuure S, Vuolteenaho R, Vainio S (2000) Kidney morphogenesis: cellular and molecular regulation. Mech Dev 92:31–45

    Article  CAS  PubMed  Google Scholar 

  • Lee DC, Hamm LM, Moritz OL (2013) Xenopus laevis tadpoles can regenerate neural retina lost after physical excision but cannot regenerate photoreceptors lost through targeted ablation. Invest Ophthalmol Vis Sci 54:1859–1867

    Article  CAS  PubMed  Google Scholar 

  • Legallicier B, Trugnan G, Murphy G, Lelongt B, Ronco P, Delauche M, Fontanges P (2001) Expression of the type IV collagenase system during mouse kidney development and tubule segmentation. J Am Soc Nephrol 12:2358–2369

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CH, Dawid IB, Chen Y, Zhao H (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci USA 109:17484–17489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelongt B, Ronco P (2003) Role of extracellular matrix in kidney development and repair. Pediatr Nephrol 18:731–742

    Article  PubMed  Google Scholar 

  • Lelongt B, Bengatta S, Delauche M, Lund LR, Werb Z, Ronco PM (2001a) Matrix metalloproteinase 9 protects mice from anti-glomerular basement membrane nephritis through its fibrinolytic activity. J Exp Med 193:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelongt B, Legallicier B, Piedagnel R, Ronco PM (2001b) Do matrix metalloproteinases MMP-2 and MMP-9 (gelatinases) play a role in renal development, physiology and glomerular diseases? Curr Opin Nephrol Hypertens 10:7–12

    Article  CAS  PubMed  Google Scholar 

  • Lévesque M, Guimond J, Pilote M, Leclerc S, Moldovan F, Roy S (2005) Expression of heat-shock protein 70 during limb development and regeneration in the axolotl. Dev Dyn 233:1525–1534

    Article  PubMed  CAS  Google Scholar 

  • Lienkamp SS (2016) Using Xenopus to study genetic kidney diseases. Semin Cell Dev Biol S1084-9521:30045–30043

    Google Scholar 

  • Lienkamp SS, Liu K, Karner CM, Carroll TJ, Ronneberger O, Wallingford JB, Walz G (2012) Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nat Genet 44:1382–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipschutz JH (1998) Molecular development of the kidney: a review of the results of gene disruption studies. Am J Kidney Dis 31:383–397

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Reimschuessel R, Hassel BA (2002) Molecular cloning of the fish interferon stimulated gene, 15 kDa (ISG15) orthologue: a ubiquitin-like gene induced by nephrotoxic damage. Gene 298:129–139

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Tang N, Zhang Q (2009) Could mycophenolate mofetil combined with benazapril delay tubulointerstitial fibrosis in 5/6 nephrectomized rats? Chin Med J 122:199–204

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhao H, Cheng CH (2016) Mutagenesis in Xenopus and Zebrafish using TALENs. Methods Mol Biol 1338:207–227

    Article  CAS  PubMed  Google Scholar 

  • Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15:222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malloch EL, Perry KJ, Fukui L, Johnson VR, Wever J, Beck CW, King MW, Henry JJ (2009) Gene expression profiles of lens regeneration and development in Xenopus laevis. Dev Dyn 238:2340–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantur M, Kemona H, Dabrowska M, Dabrowska J, Sobolewski S, Prokopowicz J (2000) α1-microglobulin as a marker of proximal tubular damage in urinary tract infection in children. Clin Nephrol 53:283–287

    CAS  PubMed  Google Scholar 

  • Martin P (1997) Wound healing – aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  • Maunsbach AB, Christensen EI (1992) Functional ultrastructure of the proximal tubule. Compr Physiol (Online, 2011). Supplement 25: Handbook of Physiology, Renal Physiol 41–107

    Google Scholar 

  • McCampbell KK, Springer KN, Wingert RA (2015) Atlas of cellular dynamics during zebrafish adult kidney regeneration. Stem Cells Int 547636

    Google Scholar 

  • McMillan JI, Riordan JW, Couser WG, Pollock AS, Lovett DH (1996) Characterization of a glomerular epithelial cell metalloproteinase as matrix metalloproteinase-9 with enhanced expression in a model of membranous nephropathy. J Clin Invest 97:1094–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menè P, Polci R, Festuccia F (2003) Mechanisms of repair after kidney injury. J Nephrol 16:186–195

    PubMed  Google Scholar 

  • Menger B, Vogt PM, Kuhbier JW, Reimers K (2010) Applying amphibian limb regeneration to human wound healing: a review. Ann Plast Surg 65:504–510

    Article  CAS  PubMed  Google Scholar 

  • Mescher AL (1996) The cellular basis of limb regeneration in urodeles. Int J Dev Biol 40:785–795

    CAS  PubMed  Google Scholar 

  • Mescher AL, Neff AW (2004) Loss of regenerative capacity: a trade-off for immune specificity? Cell Sci Rev 1:1–10

    Google Scholar 

  • Mescher AL, Wolf WL, Moseman EA, Hartman B, Harrison C, Nguyen E, Neff AW (2007) Cells of cutaneous immunity in Xenopus: studies during larval development and limb regeneration. Dev Comp Immunol 31:383–393

    Article  CAS  PubMed  Google Scholar 

  • Mescher AL, Neff AW, King MW (2013) Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs. PLoS One 8:e80477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mito T, Inoue Y, Kimura S, Miyawaki K, Niwa N, Shinmyo Y, Ohuchi H, Noji S (2002) Involvement of hedgehog, wingless, and dpp in the initiation of proximodistal axis formation during the regeneration of insect legs, a verification of the modified boundary model. Mech Dev 114:27–35

    Article  CAS  PubMed  Google Scholar 

  • Møbjerg N, Larsen EH, Jespersen Ã… (2000) Morphology of the kidney in larvae of Bufo viridis (Amphibia, Anura, Bufonidae). J Morphol 245:177–195

    Article  PubMed  Google Scholar 

  • Mochii M, Taniguchi Y, Shikata I (2007) Tail regeneration in the Xenopus tadpole. Dev Growth Differ 49:155–161

    Article  PubMed  Google Scholar 

  • Mondia JP, Levin M, Omenetto FG, Orendorff RD, Branch MR, Adams DS (2011) Long-distance signals are required for morphogenesis of the regenerating Xenopus tadpole tail. PLoS One 6:e24953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monks SP (1903) Regeneration of the body of a starfish. Proc Acad Natl Sci Phila 55:351

    Google Scholar 

  • Monks SP (1904) Variability and autotomy of Phataria. Proc Acad Natl Sci Phila 56:596–600

    Google Scholar 

  • Moritz KM, Wintour EM (1999) Functional development of the meso- and metanephros. Pediatr Nephrol 13:171–178

    Article  CAS  PubMed  Google Scholar 

  • Moshiri A, Close J, Reh TA (2004) Retinal stem cells and regeneration. Int J Dev Biol 48:1003–1014

    Article  PubMed  Google Scholar 

  • Muneoka K, Holler-Dinsmore G, Bryant SV (1986) Intrinsic control of regenerative loss in Xenopus laevis limbs. J Exp Zool 240:47–54

    Article  CAS  PubMed  Google Scholar 

  • Muñoz R, Edwards-Faret G, Moreno M, Zuñiga N, Cline H, Larraín J (2015) Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells. Dev Biol 408:229–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nadake S, Sakuma T, Sakane Y, Hara Y, Kurabayashi A, Kashiwago K, Yamamoto T, Obara M (2015) Homeolog-specific targeted mutagenesis in Xenopus using TALENs. In Vitro Cell Dev Biol Anim 51:879–884

    Google Scholar 

  • Nadasdy T, Laszik Z, Blick KE, Johnson DL, Burst-Singer K, Nast C, Cohen AH, Ormos J, Silva FG (1995) Human acute tubular necrosis: a lectin and immunohistochemical study. Hum Pathol 26:230–239

    Article  CAS  PubMed  Google Scholar 

  • Nedelkovska H, Edholm ES, Haynes N, Robert J (2013) Effective RNAi-mediated beta2-microglobulin loss of function by transgenesis in Xenopus laevis. Biol Open 2:335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieuwkoop PD (1996) What are the key advantages and disadvantages of urodele species compared to anurans as a model system for experimental analysis of early development? Int J Biol 40:617–619

    CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (eds) (1994) Normal table of Xenopus laevis (Daudin). Garland Publishing, New York, 252 p

    Google Scholar 

  • Noël A, Jost M, Maquoi E (2008) Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol 19:52–60

    Article  PubMed  CAS  Google Scholar 

  • Nonclercq D, Wrona S, Toubeau G, Zanen J, Heuson-Stiennon J, Schaudies RP, Laurent G (1992) Tubular injury and regeneration in the rat kidney following acute exposure to gentamicin: a time-course study. Renal Fail 14:507–521

    Article  CAS  Google Scholar 

  • Nony PA, Schnellmann RG (2003) Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther 304:905–912

    Article  CAS  PubMed  Google Scholar 

  • Nye HLD, Cameron JA, Chernoff EAG, Stocum DL (2003) Regeneration of the urodele limb: a review. Dev Dyn 226:280–294

    Article  PubMed  Google Scholar 

  • O’Connor RJ (1940) The evolutionary significance of the embryology of the amphibian nephric system. J Anat 75:95–101

    PubMed  PubMed Central  Google Scholar 

  • Panetta NJ, Gupta DM, Longaker MT (2010) Bone regeneration and repair. Curr Stem Cell Res Ther 5:122–128

    Article  CAS  PubMed  Google Scholar 

  • Pole RJ, Qi BQ, Beasley SW (2002) Patterns of apoptosis during degeneration of the pronephros and mesonephros. J Urol 167:269–271

    Article  PubMed  Google Scholar 

  • Poss KD, Keating MT, Nechiporuk A (2003) Tales of regeneration in zebrafish. Dev Dyn 226:202–210

    Article  PubMed  Google Scholar 

  • Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brändli AW (2008) Organization of the pronephric kidney revealed by large-scale gene expression mapping. Genome Biol 9:R84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raghow R (1994) The role of extracellular matrix in postinflammatory wound healing and fibrosis. FASEB J 8:823–831

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Tae HJ, Cho HS, Shin GW, Park BY (2015) Developmental expression analysis of Na, K-ATPase α subunits in Xenopus. Dev Genes Evol 225:105–111

    Article  CAS  PubMed  Google Scholar 

  • Reimschuessel R (2001) A fish model of renal regeneration and development. ILAR J 42:285–291

    Article  CAS  PubMed  Google Scholar 

  • Reimschuessel R, Williams D (1995) Development of new nephrons in adult kidneys following gentamicin-induced nephrotoxicity. Ren Fail 17:101–106

    Article  CAS  PubMed  Google Scholar 

  • Robert J, Cohen N (1998) Evolution of immune surveillance and tumor immunity: studies in Xenopus. Immunol Rev 166:231–243

    Article  CAS  PubMed  Google Scholar 

  • Robert J, Cohen N (2011) The genus Xenopus as a multispecies model for evolutionary and comparative immunobiology of the 21st century. Dev Comp Immunol 35:916–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert J, Ohta Y (2009) Comparative and developmental study of the immune system in Xenopus. Dev Dyn 238:1249–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi DS, Janick LM, Reh TA (1997) Basic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and glia. Dev Dyn 209:387–398

    Article  CAS  PubMed  Google Scholar 

  • Salice CJ, Rokous JS, Kane AS, Reimschuessel R (2001) New nephron development in goldfish (Carassius auratus) kidneys following repeated gentamicin-induced nephrotoxicosis. Comp Med 51:56–59

    CAS  PubMed  Google Scholar 

  • Sánchez Alvarado A (2000) Regeneration in the metazoans: why does it happen? BioEssays 22:578–590

    Article  PubMed  Google Scholar 

  • Sánchez Alvarado A (2004) Regeneration and the needs for simpler model organisms. Philos Trans R Soc Lond Ser B Biol Sci 359:759–763

    Article  Google Scholar 

  • Sánchez Alvarado A, Tsonis PA (2006) Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 7:873–884

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Asashima M, Yokota T, Nishinakamura R (2000) Cloning and expression pattern of a Xenopus pronephros-specific gene, XSMP-30. Mech Dev 92:273–275

    Article  CAS  PubMed  Google Scholar 

  • Saulnier DME, Ghanbari H, Brändli AW (2002) Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. Dev Biol 248:13–28

    Article  CAS  PubMed  Google Scholar 

  • Saxén L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge, 173 p

    Book  Google Scholar 

  • Scadding SR, Liversage RA (1974) Studies on the response of the adult newt kidney to partial nephrectomy. Am J Anat 140:349–368

    Article  CAS  PubMed  Google Scholar 

  • Scimone ML, Srivastava M, Bell GW, Reddien PW (2011) A regulatory program for excretory system regeneration in planarians. Development 138:4387–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan AM, Bonventre JV (2000) Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr Opin Nephrol Hypertens 9:427–434

    Article  CAS  PubMed  Google Scholar 

  • Simnett JD, Chopra DP (1969) Organ specific inhibitor of mitosis the amphibian kidney. Nature 222:1189–1190

    Article  CAS  PubMed  Google Scholar 

  • Simon H, Nelson C, Goff D, Laufer E, Morgan BA, Tabin C (1995) Differential expression of myogenic regulatory genes and msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs. Dev Dyn 202:1–12

    Article  CAS  PubMed  Google Scholar 

  • Singer M (1951) Induction of regeneration of forelimb of the frog by augmentation of the nerve supply. Proc Soc Exp Biol Med 76:413–416

    Article  CAS  PubMed  Google Scholar 

  • Slack JMW (2003) Regeneration research today. Dev Dyn 226:162–166

    Article  CAS  PubMed  Google Scholar 

  • Slack JMW, Beck CW, Gargioli C, Christen B (2004) Cellular and molecular mechanisms of regeneration in Xenopus. Philos Trans R Soc Lond Ser B Biol Sci 359:745–751

    Article  CAS  Google Scholar 

  • Smith HW (1953) From fish to philosopher. Little, Brown, Boston, 304 p

    Google Scholar 

  • Smith SJ, Kotecha S, Towers N, Latinkic BV, Mohun TJ (2002) XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus. Mech Dev 117:173–186

    Article  CAS  PubMed  Google Scholar 

  • Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683

    Article  CAS  PubMed  Google Scholar 

  • Stichel CC (1999) Inhibition of collagen IV deposition promotes regeneration of injured CMS axons. Eur J Neurosci 11:632–646

    Article  CAS  PubMed  Google Scholar 

  • Stoick-Cooper CL, Moon RT, Weidinger G (2007) Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 21:1292–1315

    Article  CAS  PubMed  Google Scholar 

  • Sugiura T, Taniguchi Y, Tazaki A, Ueno N, Watanabe K, Mochii M (2004) Differential gene expression between the embryonic tail bud and regenerating larval tail in Xenopus laevis. Develop Growth Differ 46:97–105

    Article  CAS  Google Scholar 

  • Suzuki M, Yakushiji N, Nakada Y, Satoh A, Ide H, Tamura K (2006) Limb regeneration in Xenopus laevis froglet. Sci World J 6:26–37

    Article  Google Scholar 

  • Suzuki KT, Isoyama Y, Kashiwagi K, Sakuma T, Ochiai H, Sakamoto N, Furuno N, Kashiwagi A, Yamamoto T (2013) High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos. Biol Open 2:448–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swingle WW (1919) On the experimental production of edema by nephrectomy. J Genet Physiol 1:509–514

    Article  CAS  Google Scholar 

  • Taira M, Otani H, Jamrich M, Dawid IB (1994) Expression of the LIM class homeobox gene Xlim-1 in pronephros and CNS cell lineages of Xenopus embryos is affected by retinoic acid and exogastrulation. Development 120:1525–1536

    Article  CAS  PubMed  Google Scholar 

  • Tanaka E, Galliot B (2009) Triggering the regeneration and tissue repair programs. Development 136:349–353

    Article  CAS  PubMed  Google Scholar 

  • Tanaka E, Reddien P (2011) The cellular basis for animal regeneration. Dev Cell 21:172–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandon P, Conlon F, Furlow JD, Horb ME (2016) Expanding the genetic toolkit in Xenopus: approaches and opportunities for human disease modeling. Dev Biol (in press). doi:10.1016/j.ydbio.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  • Tazaki A, Kitayama A, Terasaka C, Watanabe K, Ueno N, Mochii M (2005) Macroarray-based analysis of tail regeneration in Xenopus laevis larvae. Dev Dyn 233:1394–1404

    Article  CAS  PubMed  Google Scholar 

  • Thorton CS, Shields TW (1945) Five cases of atypical regeneration in the adult frog. Am Soc Ichthyol Herpetol 1945:40–42

    Google Scholar 

  • Thouveny YR, Komorowski TE, Arsanto JP, Carlson BM (1991) Early innervation of skeletal muscle during tail regeneration in urodele amphibians. J Exp Zool 260:354–370

    Article  CAS  PubMed  Google Scholar 

  • Tiedemann K, Wettstein R (1980) The mature mesonephric nephron of the rabbit embryo I. SEM studies. Cell Tissue Res 209:95–109

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson ML, Garcia-Morales C, Abu-Elmagd M, Wheeler GN (2008) Three matrix metalloproteinases are required in vivo for macrophage migration during embryonic development. Mech Dev 125:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson ML, Hendry AE, Wheeler GN (2012) Chemical genetics and drug discovery in Xenopus. Methods Mol Biol 917:155–166

    Article  CAS  PubMed  Google Scholar 

  • Torok MA, Gardiner DM, Shubin NH, Bryant SV (1998) Expression of HoxD genes in developing and regenerating axolotl limbs. Dev Biol 200:225–233

    Article  CAS  PubMed  Google Scholar 

  • Tseng AS, Levin M (2008) Tail regeneration in Xenopus laevis as a model for understanding tissue repair. J Dent Res 87:806–816

    Article  CAS  PubMed  Google Scholar 

  • Tseng AS, Carneiro K, Lemire JM, Levin M (2011) HDAC activity is required during Xenopus tail regeneration. PLoS One 6:e26382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsonis PA (2000) Regeneration in vertebrates. Dev Biol 221:273–284

    Article  CAS  PubMed  Google Scholar 

  • Tsonis PA (2002) Regenerative biology: the emerging field of tissue repair and restoration. Differentiation 70:397–409

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG (1978) Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int 14:31–49

    Article  CAS  PubMed  Google Scholar 

  • Vize PD, Jones EA, Pfister R (1995) Development of the Xenopus pronephric system. Dev Biol 171:531–540

    Article  CAS  PubMed  Google Scholar 

  • Vize PD, Seufert DW, Carroll TJ, Wallingford JB (1997) Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev Biol 188:189–204

    Article  CAS  PubMed  Google Scholar 

  • Vize PD, Carroll TJ, Wallingford JB (2003) Induction, development, and physiology of the pronephric tubules, pp 19–50. In: Vize PD, Woolf AS, JBL B (eds) The kidney: from normal development to congenital disease. Elsevier Science, California, p 519

    Google Scholar 

  • Wallin A, Zhang G, Jones TW, Jaken S, Stevens JL (1992) Mechanism of the nephrogenic repair response: Studies on proliferation and vimentin expression after 35S-1,2-dichlorovinyl-L-cysteine nephrotoxicity in vivo and in cultured proximal tubule epithelial cells. Lab Investig 66:474–484

    CAS  PubMed  Google Scholar 

  • Wang X, Zhou Y, Tan R, Xiong M, He W, Fang L, Wen P, Jiang L, Yang J (2010) Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol 299:F973–F982

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Shi Z, Cui Y, Guo X, Shi YB, Chen Y (2015) Targeted gene disruption in Xenopus laevis using CRISPR/Cas 9. Cell Biosci 5:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe N, Kato M, Suzuki N, Inoue C, Fedorova S, Hashimoto H, Maruyama S, Matsuo S, Wakamatsu Y (2009) Kidney regeneration through nephron neogenesis in medaka. Develop Growth Differ 51:135–143

    Article  Google Scholar 

  • Wenemoser D, Lapan SW, Wilkinson AW, Bell GW, Reddien PW (2012) A molecular wound response program associated with regeneration initiation in planarians. Genes Dev 26:988–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wessely O, Tran U (2011) Xenopus pronephros development – past, present, and future. Pediatr Nephrol 26:1545–1551

    Article  PubMed  PubMed Central  Google Scholar 

  • Wesson LG (1989) Compensatory growth and other growth responses of the kidney. Nephron 51:149–184

    Article  CAS  PubMed  Google Scholar 

  • Wheeler GN, Brändli AW (2009) Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus. Dev Dyn 238:1287–1308

    Article  CAS  PubMed  Google Scholar 

  • Wheeler GN, Liu KJ (2012) Xenopus: An ideal system for chemical genetics. Genesis 50:207–218

    Article  CAS  PubMed  Google Scholar 

  • Witzgall R, Brown D, Schwarz C, Bonventre JV (1994) Localization of proliferating cell nuclear antigen, vimentin, c-fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 93:2175–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrobel K, Süß F (2000) The significance of rudimentary nephrostomial tubules for the origin of the vertebrate gonad. Anat Embryol 201:273–290

    Article  CAS  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18:1028–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang EV, Gardiner DM, Carlson MRJ, Nugas CA, Bryant SV (1999) Expression of Mmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration. Dev Dyn 216:2–9

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Shultz RW, Mars WM, Wegner RE, Li Y, Dai C, Nejak K, Liu Y (2002) Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest 110:1525–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Ye S, Chen Y, Zai Z, Li X, Wang Y, Chen K (2009) Rosiglitazone protects diabetic rats against kidney injury through the suppression of renal matrix metalloproteinase-9 expression. Diabetes Obes Metab 11:519–522

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama H, Yonei-Tamura S, Endo T, Izpisúa Belmonte JC, Tamura K, Ide H (2000) Mesenchyme with fgf-10 expression is responsible for regenerative capacity in Xenopus limb buds. Dev Biol 219:18–29

    Article  CAS  PubMed  Google Scholar 

  • Yoshii C, Ueda Y, Okamoto M, Araki M (2007) Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina. Dev Biol 303:45–56

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Vize PD (2004) Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules. Dev Biol 271:322–338

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Boucher RC, Bollig F, Englert C, Hildebrandt F (2010) Characterization of mesonephric development and regeneration using transgenic zebrafish. Am J Physiol Renal Physiol 299:F1040–F1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zon LI (2008) Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 453:306–313

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly A. McLaughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Droz, S.T., McLaughlin, K.A. (2017). Use of Xenopus Frogs to Study Renal Development/Repair. In: Miller, R. (eds) Kidney Development and Disease. Results and Problems in Cell Differentiation, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-51436-9_4

Download citation

Publish with us

Policies and ethics