Skip to main content

Computer-Aided Compositional Design and Verification for Modular Robots

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 2))

Abstract

To take full advantage of the flexibility of a modular robot system, users must be able to create and verify new configurations and behaviors quickly. We present a design framework that facilitates rapid creation of new configurations and behaviors through composition of existing ones, and tools to verify configurations and behaviors as they are being created. New configurations are created by combining existing sub-configurations, for example combining four legs and a body to create a walking robot. Behaviors are associated with each configuration, so that when sub-configurations are composed, their associated behaviors are immediately available for composition as well. We introduce a new motion description language (Series-Parallel Action Graphs) that facilitates the rapid creation of complex behaviors by composition of simpler behaviors. We provide tools that automatically verify configurations and behaviors during the design process, allowing the user to identify problems early and iterate quickly. In addition to verification, users can evaluate their configurations and behaviors in a physics-based simulator.

Tarik Tosun and Gangyuan Jing contributed equally to this work.

This work was funded by NSF grant numbers CNS-1329620 and CNS-1329692.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bezzo, N., et al.: Demo abstract: Roslaba modular programming environment for robotic applications. In: ICCPS (2014)

    Google Scholar 

  2. Casal, A.: Reconfiguration planning for modular self-reconfigurable robots. Ph.D. Thesis, Stanford Univ. (2001)

    Google Scholar 

  3. Christensen, D., Brandt, D., Stoy, K., Schultz, U.P.: A unified simulator for self-reconfigurable robots. In: IROS (2008)

    Google Scholar 

  4. Davey, J., Sastra, J., Piccoli, M., Yim, M.: Modlock: a manual connector for reconfigurable modular robots. In: IROS (2012)

    Google Scholar 

  5. Davey, J., et al.: Emulating self-reconfigurable robots: design of the SMORES system. In: IROS (2012)

    Google Scholar 

  6. Fukuda, T., Kawauchi, Y.: Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator. In: ICRA (1990)

    Google Scholar 

  7. Hornby, G.S., Lipson, H., Pollack, J.B.: Generative representations for the automated design of modular physical robots. In: ICRA (2003)

    Google Scholar 

  8. Huang, J., et al.: ROSRV: Runtime verification for robots. In: Runtime Verification, pp. 247–254. Springer (2014)

    Google Scholar 

  9. Kasper Stoy David Brandt, D.J.C.: Self-reconfigurable robots: an introduction. MIT Press, Cambridge (2010)

    Google Scholar 

  10. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IROS (2004)

    Google Scholar 

  11. Lipson, H., Pollack, J.B.: Towards continuously reconfigurable self-designing robotics. In: ICRA (2000)

    Google Scholar 

  12. Mantzouratos*, Y., Tosun*, T., Khanna Sanjeev, Y., Mark: On embeddability of modular robot designs. In: ICRA (2014)

    Google Scholar 

  13. Marzinotto, A., Colledanchise, M., Smith, C., Ogren, P.: Towards a unified behavior trees framework for robot control. In: ICRA (2014)

    Google Scholar 

  14. Mehta, A., et al.: A design environment for the rapid specification and fabrication of printable robots. In: ISER (2014)

    Google Scholar 

  15. Pan, J., Chitta, S., Manocha, D.: FCL: a general purpose library for collision and proximity queries. In: ICRA (2012)

    Google Scholar 

  16. Physx. http://www.geforce.com/hardware/technology/physx. Accessed: 2015-04-35

  17. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  18. Salemi, B., Shen, W.M., Will, P.: Hormone-controlled metamorphic robots. In: ICRA (2001)

    Google Scholar 

  19. Sklyarov, V., Skliarova, I.: Design and implementation of parallel hierarchical finite state machines. In: Second International Conference on Communications and Electronics, ICCE 2008, pp. 33–38. IEEE (2008)

    Google Scholar 

  20. Sproewitz, A., Moeckel, R., Maye, J., Ijspeert, A.J.: Learning to move in modular robots using central pattern generators and online optimization. Int. J. Robot. Res. 27(3–4), 423–443 (2008)

    Article  Google Scholar 

  21. Stoy, K., Shen, W.M., Will, P.M.: Using role-based control to produce locomotion in chain-type self-reconfigurable robots. IEEE/ASME Trans. Mech. 7, 410 (2002)

    Article  Google Scholar 

  22. Unity3d. http://unity3d.com/. Accessed: 2015-04-35

  23. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. In: Proceedings of the ACM Symposium on Theory of Computing (1979)

    Google Scholar 

  24. Walter, J.E., Tsai, E.M., Amato, N.M.: Choosing good paths for fast distributed reconfiguration of hexagonal metamorphic robots. In: ICRA (2002)

    Google Scholar 

  25. Yim, M.: Locomotion with a unit-modular reconfigurable robot. Ph.D. Thesis, Stanford (1994)

    Google Scholar 

  26. Yim, M., Duff, D.G., Roufas, K.: Modular reconfigurable robots, an approach to urban search and rescue. In: 1st International Workshop on Human-friendly Welfare Robotic Systems (2000)

    Google Scholar 

  27. Yim, M., Duff, D.G., Roufas, K.D.: PolyBot: a modular reconfigurable robot. In: ICRA (2000)

    Google Scholar 

  28. Yim, M., et al.: Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14, 43 (2007)

    Article  Google Scholar 

  29. Yoshida, E., et al.: A self-reconfigurable modular robot: reconfiguration planning and experiments. In: IJRR (2002)

    Google Scholar 

  30. Zhang, Y., et al.: Phase automata: a programming model of locomotion gaits for scalable chain-type modular robots. In: IROS (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Tosun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Tosun, T., Jing, G., Kress-Gazit, H., Yim, M. (2018). Computer-Aided Compositional Design and Verification for Modular Robots. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-51532-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51532-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51531-1

  • Online ISBN: 978-3-319-51532-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics