Skip to main content

Abstract

The ability to ‘see through’ the human body offered by modern medical imaging technologies greatly advanced medical diagnostics, as it is able to uncover abundant information from the hidden organs and tissues, which otherwise are not available to clinicians. Clinicians use medical images to identify abnormality in tissues to diagnose diseases such as tumor and cancer, and to monitor effectiveness of treatments. Medical imaging plays important role in making effective decisions by clinicians. Medical images also provide authentic information to construct accurate and reliable biomechanical models of human body [104, 105, 136147]. The four imaging modalities that have been adopted to assess bone quantity and quality are dual energy X-ray absorptiometry (DXA), quantitative computed tomography (QCT), magnetic resonance imaging (MRI) and ultrasonography (US) [148152]. Currently, DXA and QCT are the most commonly used ones in either clinic or research. The work principles of the two modalities are briefly introduced in the following sections. As the principles are quite complicated [153, 154], in the following introduction we mainly focus on how bone tissue mass and geometry information are captured by medical imaging and how they are used in assessment of bone quantity and quality, as these information are necessary to understand the biomechanical models described later in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Cranney, S.A. Jamal, J.F. Tsang, G.R. Josse, W.D. Leslie, Low bone mineral density and fracture burden in postmenopausal women. CMAJ 177, 575–580 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  2. J.D. Michelson, A. Myers, R. Jinnah, Q. Cox, M. Van Natta, Epidemiology of hip fractures among the elderly: risk factors for fracture type. Clin. Orthop. Relat. Res. 311, 129–135 (1995)

    Google Scholar 

  3. Y. Luo, Z. Ferdous, W.D. Leslie, Precision study of DXA-based patient-specific finite element modeling for assessing hip fracture risk. Int. J. Numer. Methods Biomed. Eng. 29, 615–629 (2013)

    Article  Google Scholar 

  4. J.O. Den Buijs, D. Dragomir-Daescu, Validated finite element models of the proximal femur using two-dimensional projected geometry and bone density. Comput. Methods Prog. Biomed. 104, 168–174 (2010)

    Article  Google Scholar 

  5. M. Bessho, I. Ohnishi et al., Prediction of strength and strain of the proximal femur by a CT-based finite element method. J. Biomech. 40, 1745–1753 (2007)

    Article  PubMed  Google Scholar 

  6. M. Mirzaei, M. Keshavarzian, V. Naeini, Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method. Bone 64, 108–114 (2014)

    Article  PubMed  Google Scholar 

  7. R. Brunader, D.K. Shelton, Radiologic bone assessment in the evaluation of osteoporosis. Am. Fam. Physician 65, 1357–1365 (2002)

    PubMed  Google Scholar 

  8. J.E. Adams, Advances in bone imaging for osteoporosis. Nat. Rev. Endocrinol. 9, 28–42 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. International Atomic Energy Agency (IAEA), Dual energy X-Ray absorptiometry for bone mineral density and body composition assessment. IAEA in Austria (2010)

    Google Scholar 

  10. International Atomic Energy Agency (IAEA), Diagnostic Radiology Physics: A Handbook for Teachers and Students. IAEA in Austria (2014)

    Google Scholar 

  11. B. Helgason, E. Perilli et al., Mathematical relationships between bone density and mechanical properties: a literature review. Clin. Biomech. 23, 135–146 (2008)

    Article  Google Scholar 

  12. P. Ammann, R. Rizzoli, J.-M. Meyer, J.-P. Bonjour, Bone density and shape as determinants of bone strength in IGF-I and/or pamidronate-treated ovariectomized rats. Osteoporosis. Int. 6, 219–227 (1996)

    Article  CAS  Google Scholar 

  13. M.R. McClung, The relationship between bone mineral density and fracture risk. Curr. Osteoporos. Rep. 3, 57–63 (2005)

    Article  PubMed  Google Scholar 

  14. J.H. Krege, X. Wan, B.C. Lentle, C. Berger, L. Langsetmo, J.D. Adachi, J.C. Prior, A. Tenenhouse, J.P. Brown, N. Kreiger, W.P. Olszynski, R.G. Josse, D. Goltzman (on behalf of the CaMos Research Group), Fracture risk prediction: importance of age, BMD and spine fracture status. BoneKEy Rep. 2, 404 (2013). doi:10.1038/bonekey.2013.138

    Google Scholar 

  15. C.A. Brauer, M. Coca-Perraillon, D.M. Cutler, A.B. Rosen, Incidence and Mortality of Hip Fractures in the United States. J. Am. Med. Assoc. 302, 1573–1579 (2009)

    Article  CAS  Google Scholar 

  16. D.K. Dhanwal, C. Cooper, E.M. Dennison, Geographic variation in osteoporotic hip fracture incidence: the growing importance of Asian influences in coming decades. J. Osteoporos. 2010, Article ID 757102, 5p (2010)

    Google Scholar 

  17. D. Marshall, O. Johnell, H. Wedel, Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312, 1254–1259 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. K.L. Stone, D.G. Seeley, L.Y. Lui et al., BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J. Bone Miner. Res. 18, 1947–1954 (2003)

    Article  PubMed  Google Scholar 

  19. S. Ishii, G.A. Greendale, J.A. Cauley, C.J. Crandall, M.H. Huang, M.E. Danielson, A.S. Karlamangla, Fracture risk assessment without race/ethnicity information. J. Clin. Endocrinol. Metab. 97 (10), 3593–3602 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. E.S. Siris, P.D. Miller, E. Barrett-Connor, K.G. Faulkner, L.E. Wehren, T.A. Abbott, M.L. Berger, A.C. Santora, L.M. Sherwood, Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the national osteoporosis risk assessment. JAMA 286, 2815–2822 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. P.D. Ross, Y.-F. He, A.J. Yates, C. Coupland, P. Ravn, M. McClung, D. Thompson, R.D. Wasnich, Body size accounts for most differences in bone density between Asian and Caucasian women. Calcif. Tissue Int. 59, 339–343 (1996)

    Article  CAS  PubMed  Google Scholar 

  22. P.D. Ross, H. Norimatsu, J.W. Davis, K. Yano, R.D. Wasnich, S. Fujiwara, Y. Hosoda, L.J. Melton, A comparison of hip fracture incidence among native Japanese, Japanese Americans, and American Caucasians. Am. J. Epidemiol. 133, 801–809 (1991)

    CAS  PubMed  Google Scholar 

  23. K. Engelke, T. Lang, S. Khosla, L. Qin, P. Zysset, W.D. Leslie, J.A. Shepherd, J.T. Schousboe, Clinical use of quantitative computed tomography (QCT) of the hip in the management of osteoporosis in adults: the 2015 ISCD official positions - part I. J. Clin. Densitom. 18, 338–358 (2015)

    Article  PubMed  Google Scholar 

  24. J. Radon, über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten. Berichte über die Verhandlungen der Königlich-Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 69, 262–227 (1917)

    Google Scholar 

  25. G.N. Hounsfield, Computerized transverse axial scanning (tomography). 1. Description of system. Br. J. Radiol. 46, 1016–1022 (1973)

    Google Scholar 

  26. L.W. Goldman, Principles of CT and CT technology. J. Nucl. Med. Technol. 35, 115–128 (2007)

    Article  PubMed  Google Scholar 

  27. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988)

    Google Scholar 

  28. W.A. Kalender, D. Felsenberg, H.K. Genant, M. Fischer, J. Dequeker, J. Reeve, The European spine phantom–a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur. J. Radiol. 20, 83–92 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. P.D. Miller, P.D. Delmas, R. Lindsay et al., Early responsiveness of women with osteoporosis to teriparatide after therapy with alendronate or risedronate. J. Clin. Endocrinol. Metab. 93, 3785–3793 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. R. Eastell, T. Lang, S. Boonen, S. Cummings, P.D. Delmas, J.A. Cauley, Z. Horowitz, E. Kerzberg, G. Bianchi, D. Kendler, P. Leung, Z. Man, P. Mesenbrink, E.F. Eriksen, D.M. Black (HORIZON Pivotal Fracture Trial), Effect of once-yearly zoledronic acid on the spine and hip as measured by quantitative computed tomography: results of the HORIZON Pivotal Fracture Trial. Osteoporos. Int. 21, 1277–1285 (2016)

    Google Scholar 

  31. H.K. Genant, C. Libanati, K. Engelke et al., Improvements in hip trabecular, subcortical, and cortical density and mass in postmenopausal women with osteoporosis treated with denosumab. Bone 56, 482–488 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. K. Engelke, T. Fuerst, G. Dasic et al., Regional distribution of spine and hip QCT BMD responses after one year of once-monthly ibandronate in postmenopausal osteoporosis. Bone 46, 1626–1632 (2010)

    Article  PubMed  Google Scholar 

  33. K.E. Poole, G.M. Treece, A.H. Gee et al., Denosumab rapidly increases cortical bone in key locations of the femur: a 3d bone mapping study in women with osteoporosis. J Bone Miner Res, 30, 46–54 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. L. Yang, A.V. Sycheva, D.M. Black, R. Eastell, Site-specific differential effects of once-yearly zoledronic acid on the hip assessed with quantitative computed tomography: results from the HORIZON Pivotal Fracture Trial. Osteoporos. Int. 24, 329–338 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. A.C. Looker, E.S. Orwoll, C.C. Johnston, R.L. Lindsay, H.W. Wahner, W.L. Dunn, M.S. Calvo, T.B. Harris, S.P. Heyse, Prevalence of low femoral bone density in older U.S. adults from NHANES III. J. Bone Miner. Res. 12, 1761–1768 (1997)

    Google Scholar 

  36. P.J. Pickhardt, G. Bodeen, J.K. Brown, N. Binkley, Comparison of femoral neck BMD evaluation obtained using lunar DXA and QCT with asynchronous calibration from CT colonography. J. Clin. Densitom. 18, 5–12 (2015)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Luo, Y. (2017). Bone Imaging for Osteoporosis Assessment. In: Image-Based Multilevel Biomechanical Modeling for Fall-Induced Hip Fracture. Springer, Cham. https://doi.org/10.1007/978-3-319-51671-4_3

Download citation

Publish with us

Policies and ethics