Skip to main content

Generalizations of Simple Kriging Methods in Spatial Data Analysis

  • Conference paper
  • First Online:
Meshfree Methods for Partial Differential Equations VIII

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 115))

Abstract

In this article, we use the theory of meshfree approximation to generalize the simple kriging methods by kernel-based probabilities. The main idea is that the new kriging estimations are modeled by the Gaussian fields indexed by bounded linear functionals defined on Sobolev spaces. Moreover, the covariances of the Gaussian fields at the observed functionals can be computed by the given covariance kernels with respect to the related functionals, for example, Gaussian kernels evaluated at points and gradients. This guarantees that the generalized kriging estimations can be obtained by the same techniques of the simple kriging methods and the generalized kriging estimations can cover many kinds of the complex observed information. By the generalized kriging methods, we can model the geostatistics with the additional observations of gradients at the uncertain locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Adams, J.J.F. Fournier, Sobolev Spaces, 2nd edn. (Elsevier/Academic, Amsterdam, 2003)

    MATH  Google Scholar 

  2. J.O. Berger, Statistical Decision Theory and Bayesian Analysis (Springer, New York, 1993). Corrected reprint of the second edition (1985). MR 1234489 (94j:62002)

    Google Scholar 

  3. A. Berlinet, C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics (Kluwer Academic Publishers, Boston, MA, 2004)

    Book  MATH  Google Scholar 

  4. M.D. Buhmann, Radial Basis Functions: Theory and Implementations (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  5. J.-P. Chilés, P. Delfiner, Geostatistics: Modeling Spatial Uncertainty, 2nd edn. (Wiley, Hoboken, 1999)

    Book  MATH  Google Scholar 

  6. G.E. Fasshauer, Meshfree Approximation Methods with matlab (World Scientific Publishing, Hackensack, NJ, 2007)

    Book  MATH  Google Scholar 

  7. G.E. Fasshauer, M.J. McCourt, Kernel-Based Approximation Methods Using MATLAB (World Scientific, Hackensack, NJ, 2015)

    Book  MATH  Google Scholar 

  8. G.E. Fasshauer, Q. Ye, Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators. Numer. Math. 119 (3), 585–611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. G.E. Fasshauer, Q. Ye, Reproducing kernels of Sobolev spaces via a green kernel approach with differential operators and boundary operators. Adv. Comput. Math. 38 (4), 891–921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Janson, Gaussian Hilbert Spaces (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  11. I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd edn. (Springer, New York, 1991)

    MATH  Google Scholar 

  12. B.A. Lockwood, M. Anitescu, Gradient-enhanced universal kriging for uncertainty propagation. Nucl. Sci. Eng. 170 (2), 168–195 (2012)

    Article  Google Scholar 

  13. M. Scheuerer, R. Schaback, M. Schlather, Interpolation of spatial data—a stochastic or a deterministic problem? Eur. J. Appl. Math. 24, 601–629 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. M.L. Stein, Interpolation of Spatial Data (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  15. G. Wahba, Spline Models for Observational Data (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990)

    Book  MATH  Google Scholar 

  16. H. Wendland, Scattered Data Approximation (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  17. Q. Ye, Kernel-based methods for stochastic partial differential equations (2015). arXiv:1303.5381v8

    Google Scholar 

  18. Q. Ye, Optimal designs of positive definite kernels for scattered data approximation. Appl. Comput. Harmon. Anal. 41 (1), 214–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ye, Q. (2017). Generalizations of Simple Kriging Methods in Spatial Data Analysis. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VIII . Lecture Notes in Computational Science and Engineering, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-319-51954-8_8

Download citation

Publish with us

Policies and ethics