Skip to main content

Exciton-Polariton Quantum Simulators

  • Chapter
  • First Online:
Quantum Simulations with Photons and Polaritons

Part of the book series: Quantum Science and Technology ((QST))

Abstract

A quantum simulator is a purposeful quantum machine that can address complex quantum problems in a controllable setting and an efficient manner. This chapter introduces a solid-state quantum simulator platform based on exciton-polaritons, which are hybrid light-matter quantum quasi-particles. We describe the physical realization of an exciton-polariton quantum simulator in semiconductor materials (hardware) and discuss a class of problems, which the exciton-polariton quantum simulators can address well (software). A current status of the experimental progress in building the quantum machine is reviewed, and potential applications are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. G.D. Mahan, Many-Particle Physics (Kluwer Academic/Plenum Publishers, New York, 1981)

    Google Scholar 

  3. S. Lloyd, Universal quantum simulators. Science 273, 1073–1078 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. I. Buluta, F. Nori, Quantum simulators. Science 326, 108–111 (2009)

    Article  ADS  Google Scholar 

  5. J.I. Cirac, P. Zoller, Golas and opportunites in quantum simulation. Nat. Phys. 8, 264–266 (2012)

    Article  Google Scholar 

  6. I.M. Georgescu, S. Ashhab, F. Nori, Quantum simulation. Rev. Mod. Phys. 86, 153–195 (2014)

    Article  ADS  Google Scholar 

  7. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  8. I. Bloch, J. Dalibard, S. Nascimbéne, Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012)

    Article  Google Scholar 

  9. R. Blatt, C.F. Roos, Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012)

    Article  Google Scholar 

  10. A. Aspuru-Guzik, P. Walther, Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012)

    Article  Google Scholar 

  11. A.A. Houck, H. Türeci, J. Koch, On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012)

    Article  Google Scholar 

  12. D. Lu, B. Xu, N. Xu, Z. Li, H. Chen, X. Peng, R. Xu, J. Du, Quantum chemistry simulation on quantum computers: theories and experiments. Phys. Chem. Chem. Phys. 14, 9411–9420 (2012)

    Article  Google Scholar 

  13. P. Hauke, F.M. Cucchietti, L. Tagliacozzo, I. Deutsch, M. Lewenstein, Can one trust quantum simulators? Rep. Prog. Phys. 75, 082401 (2012)

    Article  ADS  Google Scholar 

  14. M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, I. Bloch, Quantum phase transition from a superfulid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  Google Scholar 

  15. T. Esslinger, Fermi-Hubbard physics with atoms in an optical lattice. Annu. Rev. Condens. Matter Phys. 1, 129–152 (2010)

    Article  ADS  Google Scholar 

  16. K. Kim et al., Quantum simulation of the transverse Ising model. New J. Phys. 13, 105003 (2011)

    Article  ADS  Google Scholar 

  17. J.W. Britton, B.C. Sawyer, A.C. Keith, C.-C. Joseph Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012)

    Article  ADS  Google Scholar 

  18. T. Byrnes, P. Recher, N.Y. Kim, S. Utsunomiya, Y. Yamamoto, Quantum simulator for the Hubbard model with long-range Coulomb interactions using surface acoustic waves. Phys. Rev. Lett. 99, 016405 (2006)

    Article  ADS  Google Scholar 

  19. T. Byrnes, N.Y. Kim, K. Kusudo, Y. Yamamoto, Quantum simulation of Fermi-Hubbard models in semiconductor quantum dot arrays. Phys. Rev. B 78, 075320 (2007)

    Article  ADS  Google Scholar 

  20. G. De Simoni, A. Singha, M. Gibertini, B. Karmakar, M. Polini, V. Piazza, L.N. Pfeiffer, K.W. West, F. Beltram, V. Pellegrini, Delocalized-localized transition in a semiconductor two-dimensional honeycomb lattice. Appl. Phys. Lett. 97, 132113 (2010)

    Article  ADS  Google Scholar 

  21. A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M. Polini, G. Vignale, M.I. Katsnelson, A. Pinczuk, L.N. Pfeiffer, K.W. West, V. Pellegrini, Two-dimensional Mott-Hubbard electrons in an artificial honeycomb lattice. Science 332, 1176–1179 (2011)

    Article  ADS  Google Scholar 

  22. J. Koch, A.A. Houck, K. Le Hur, S.M. Girvin, Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010)

    Article  ADS  Google Scholar 

  23. D.G. Angelakis, M.F. Santos, S. Bose, Photon-blockade-induced Mott transitions and \(XY\) spin models in coupled cavity arrays. Phys. Rev. A 76, 031805(R) (2007)

    Article  ADS  Google Scholar 

  24. M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006)

    Article  Google Scholar 

  25. A.D. Greentree, C. Tahan, J.H. Cole, L.C.L. Hollenberg, Quantum phase transitions of light. Nat. Phys. 2, 856–861 (2006)

    Article  Google Scholar 

  26. T. Byrnes, P. Recher, Y. Yamamoto, Mott transitions of excitons polaritons and indirect excitons in a periodic potential. Phys. Rev. B 81, 205312 (2010)

    Article  ADS  Google Scholar 

  27. N. Na, Y. Yamamoto, Massive parallel generation of indistinguishable single photons iva the polaritonic superfulid to Mott-insulator quantum phase transition. New J. Phys. 12, 123001 (2010)

    Article  ADS  Google Scholar 

  28. J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276, 238–257 (1963)

    Article  ADS  Google Scholar 

  29. Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288, 462–468 (2000)

    Article  ADS  Google Scholar 

  30. S. Sachdev, Quantum magnetism and criticality. Nat. Phys. 4, 173–185 (2008)

    Article  Google Scholar 

  31. S. Sachdev, B. Keimer, Quantum criticality. Phys. Today 64(2), 29–35 (2011)

    Article  Google Scholar 

  32. D. Jaksch, P. Zoller, Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. New J. Phys. 5, 56 (2003)

    Article  ADS  Google Scholar 

  33. Y.-J. Lin, R.L. Compton, K. Jiménez-García, J.V. Porto, I.B. Spielman, Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009)

    Article  ADS  Google Scholar 

  34. V. Glitski, I.B. Spielman, Spin-orbit coupling in quantum gases. Nature 494, 49–54 (2013)

    Article  ADS  Google Scholar 

  35. A. Aspuru-Guzik, A.D. Dutoi, P.J. Love, M. Head-Gordon, Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005)

    Article  ADS  Google Scholar 

  36. I.S. Kassal, S.P. Jordan, P.J. Love, M. Mohseni, A. Aspuru-Guzik, Quantum algorithms for the simulation of chemical dynamics. Proc. Nat. Acad. Sci. 105, 18681–18686 (2008)

    Article  ADS  Google Scholar 

  37. AYu. Smirnov, S. Savel’ev, L.G. Mourokh, F. Nori, Modelling chemical reactions using semiconductor quantum dots. Eur. Phys. Lett. 80, 67008 (2007)

    Article  ADS  Google Scholar 

  38. S. Giovanazzi, Hawking radiation in sonic black holes. Phys. Rev. Lett. 94, 061302 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  39. D. Gerace, I. Carusotto, Analog Hawking radiation from an acoustic black hole in a flowing polariton superfluid (2012). arXiv:1206.4276

  40. R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C.F. Roos, Quantum simulation of the Dirac equation. Nature 463, 68–71 (2009)

    Article  ADS  Google Scholar 

  41. L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, T. Esslinger, Creating, moving and merging Dirac points with Fermi gas in a tunable honeycomb lattice. Nature 483, 302–305 (2012)

    Article  ADS  Google Scholar 

  42. K.K. Gomes, W. Mar, W. Ko, F. Guinea, H.C. Manoharan, Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012)

    Article  ADS  Google Scholar 

  43. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcvity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    Article  ADS  Google Scholar 

  44. A. Kavokin, J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Clarendon Press, Oxford, 2006)

    Google Scholar 

  45. D. Snoke, P. Littlewood, Polariton condensates. Phys. Today 63(8), 42–47 (2010)

    Article  Google Scholar 

  46. H. Deng, H. Haug, Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1490–1537 (2010)

    Article  ADS  Google Scholar 

  47. P.Y. Yu, M. Cardona, Fundamentals of Semciodnuctors. Springer (1996)

    Google Scholar 

  48. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, Photoluminescence decay times in strong-coupling semiocnductor microcavities. Phys. Rev. B 53, R7642–7645 (1996)

    Article  ADS  Google Scholar 

  49. E. Hanamura, H. Haug, Condensation effects of excitons. Phys. Rep. 33C, 209–284 (1997)

    ADS  Google Scholar 

  50. A. Griffin, D.W. Snoke, S. Stringari, Bose-Einstein Condensation (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  51. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B 56, 7554–7563 (1997)

    Article  ADS  Google Scholar 

  52. F. Tassone, Y. Yamamoto, Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830–10842 (1999)

    Article  ADS  Google Scholar 

  53. D. Porras, C. Ciuti, J.J. Baumberg, C. Tejedor, Polariton dynamics and Bose-Einstein condesnation in semiconductor microcavities. Phys. Rev. B 66, 085304 (2002)

    Article  ADS  Google Scholar 

  54. C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells. Phys. Rev. B 58, 7926–7933 (1998)

    Article  ADS  Google Scholar 

  55. A. Imamoglu, R.J. Ram, S. Pau, Y. Yamamoto, Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996)

    Article  ADS  Google Scholar 

  56. H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002)

    Article  ADS  Google Scholar 

  57. J. Kapsrzak et al., Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006)

    Article  ADS  Google Scholar 

  58. H. Deng, D. Press, S. Götzinger, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett. 97, 146402 (2006)

    Article  ADS  Google Scholar 

  59. R.B. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007)

    Article  ADS  Google Scholar 

  60. H. Deng, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99, 126403 (2007)

    Article  ADS  Google Scholar 

  61. S. Christopoulos et al., Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007)

    Article  ADS  Google Scholar 

  62. S. Kéna-Cohen, S.R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon. 4, 371–375 (2010)

    Article  ADS  Google Scholar 

  63. J.D. Plumhof, T. Stöferle, L. Mai, U. Scherf, R. Mahrt, Room-temperature Bose-Eistein condensation of cavity exciton-polaritons in a polymer. Nat. Mater. 13, 247–252 (2014)

    Article  ADS  Google Scholar 

  64. C.W. Lai et al., Coherent zero-state and \(\pi \)-state in an exciton-poalriton condensate array. Nature 450, 529–533 (2007)

    Article  ADS  Google Scholar 

  65. R.B. Balili, D.W. Snoke, L. Pfeiffer, K. West, Actively tuned and spatially trapped polaritons. Appl. Phys. Lett. 88, 031110 (2006)

    Article  ADS  Google Scholar 

  66. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect. Phys. Rev. Lett. 53, 2173–2176 (1984)

    Article  ADS  Google Scholar 

  67. M.M. De Lima, M. van der Poel Jr., P.V. Santos, J.M. Hvam, Phonon-induced polariton superlattices. Phys. Rev. Lett. 97, 045501 (2006)

    Google Scholar 

  68. E.A. Cerda-Méndez et al., Polariton condensation in dynamic acoustic lattices. Phys. Rev. Lett. 105, 116402 (2010)

    Article  ADS  Google Scholar 

  69. E.A. Cerda-Méndez, D. Sarkar, D.N. Krizhanovskii, S.S. Gavrilov, K. Biermann, M.S. Skolnick, P.V. Santos, Exciton-polariton gap solitons in two-dimensional lattices. Phys. Rev. Lett. 111, 146401 (2013)

    Article  ADS  Google Scholar 

  70. O. El Daïf et al., Polariton quantum boxes in semiconductor microcvities. Appl. Phys. Lett. 88, 061105 (2006)

    Article  ADS  Google Scholar 

  71. G. Nardin, Y. Léger, B. Pietka, F. Morier-Genoud, B. Deveaud-Plédran, Phase-resolved imaging of confined exciton-poalriton wave functions in elliptical traps. Phys. Rev. B 82, 045304 (2010)

    Article  ADS  Google Scholar 

  72. J. Bloch, F. Boeuf, J.M. Gérard, B. Legrand, J.Y. Marzin, R. Planel, V. Thierry-Mieg, E. Costard, Strong and weak coupling regime in pillar semiconductor microcavities. Phys. E 2, 915 (1998)

    Article  Google Scholar 

  73. M. Galbiati, L. Ferrier, D.D. Solynshkov, D. Tanese, E. Wertz, P. Senellart, I. Sagnes, A. Lemaître, E. Galopin, G. Malpuech, J. Bloch, Polariton condensation in photonic molecules. Phys. Rev. Lett. 108, 126403 (2012)

    Article  ADS  Google Scholar 

  74. E. Wertz et al., Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6, 860–864 (2010)

    Article  Google Scholar 

  75. T. Jacqmin et al., Direct observation of Dirac cones and a flatband in a honeycomb lattice for polartions. Phys. Rev. Lett. 112, 116402 (2014)

    Article  ADS  Google Scholar 

  76. G. Roumpos, W.H. Nitsche, S. Höfling, A. Forchel, Y. Yamamoto, Gain-induced trapping of microcavity exciton polariton condensates. Phys. Rev. Lett. 104, 126403 (2010)

    Article  ADS  Google Scholar 

  77. G. Tosi, G. Christmann, N.G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P.G. Lagoudakis, J.J. Baumberg, Geometrically locked vortex lattices in semiconductor quantum fluids. Nat. Commun. 3, 1243 (2012)

    Article  ADS  Google Scholar 

  78. N.Y. Kim et al., GaAs microcavity exciton-polaritons in a trap. Phys. Rev. Lett. 105, 116402 (2010)

    Article  Google Scholar 

  79. N.Y. Kim et al., Dynamical \(d\)-wave condensation of exciton-polaritons in a two-dimensional square-lattice potential. Nat. Phys. 7, 681–686 (2011)

    Article  Google Scholar 

  80. N. Masumoto, N.Y. Kim, T. Byrnes, K. Kenichiro, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Exciton-poalriton condensates with flat banda in a two-dimensional kagome lattice. New J. Phys. 14, 065002 (2012)

    Article  ADS  Google Scholar 

  81. N.Y. Kim, K. Kenichiro, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Exciton-poalriton condensates near the Dirac point in a triangular lattice. New J. Phys. 15, 035032 (2013)

    Article  ADS  Google Scholar 

  82. K. Kusudo, N.Y. Kim, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Stochastic formation of polariton condensates in two degenerate orbital states. Phys. Rev. B 87, 214503 (2013)

    Article  ADS  Google Scholar 

  83. E. Hecht, Optics, Addison-Wesley (2001)

    Google Scholar 

  84. R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  85. G. Roumpos, M. Lohse, W.H. Nitsche, J. Keeling, M.H. Szymanska, P.B. Littlewood, A. Löffler, S. Höfling, L. Worschech, A. Forchel, Y. Yamamoto, Power-law decay of the spatial correlation function in exciton-polariton condensates. Proc. Nat. Acad. Sci. 109, 6467–6472 (2012)

    Article  ADS  Google Scholar 

  86. W.H. Nitsche, N.Y. Kim, G. Roumpos, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas (2014). arXiv:1401.0756

  87. B.R. Hanburry, R.Q. Twiss, The test of a new type of stella interferometer on Sirrus. Nature 177, 27–29 (1956)

    Article  Google Scholar 

  88. T. Horikiri, P. Schwendimann, A. Quattropani, S. Höfling, A. Forchel, Y. Yamamoto, Higher order coherence of exciton-polariton condensates. Phys. Rev. B 81, 033307 (2010)

    Article  ADS  Google Scholar 

  89. M. Aßmann et al., From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proc. Nat. Acad. Sci. 108, 1804–1809 (2011)

    Google Scholar 

  90. M. Imada, A. Fujimori, Y. Tokura, Metal-insulator transition. Rev. Mod. Phys. 70, 1039–1263 (1998)

    Article  ADS  Google Scholar 

  91. M.B. Salamon, M. Jaime, The physics of manganites: Structure and transport. Rev. Mod. Phys. 73, 583–628 (2001)

    Article  ADS  Google Scholar 

  92. K. Ishida, Y. Nakai, H. Hosono, To what extent iron-pnictide new superconductors have been clarifies: a progress report. J. Phys. Soc. Jpn. 78, 062001 (2009)

    Article  ADS  Google Scholar 

  93. I.I. Mazin, J. Schmalian, Pairing symmetry and pairing state in ferropnictides: theoretical overview. Phys. C 469, 614–627 (2009)

    Article  ADS  Google Scholar 

  94. A. Isacsson, S.M. Girvin, Multiflavor bosonic Hubbard models in the first excite Bloch band of an optical lattice. Phys. Rev. A 72, 053604 (2005)

    Article  ADS  Google Scholar 

  95. L.W. Vincent, C. Wu, Atomic matter of nonzero-momentum Bose-Einstin condensation and orbital current order. Phys. Rev. A 74, 013607 (2006)

    Article  Google Scholar 

  96. T. Müller, S. Fölling, A. Widera, I. Bloch, State separation and dynmics of ultracold atoms in higher lattice orbitals. Phys. Rev. Lett. 99, 200405 (2007)

    Article  Google Scholar 

  97. G. Wirth, M. Ölschläger, A. Hemmercih, Evidence for orbital superfluidity in the \(P\)-band of a bipartite optical square lattice. Nat. Phys. 7, 147–153 (2011)

    Article  Google Scholar 

  98. M. Ölschläger, G. Wirth, A. Hemmercih, Unconventional superfluid order in the \(F\) band of a bipartite optical square lattice. Phys. Rev. Lett. 106, 015302 (2011)

    Article  ADS  Google Scholar 

  99. P. Soltan-Panahi, D. Lühmann, J. Struck, P. Windpassinger, K. Sengstock, Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices. Nat. Phys. 8, 71–75 (2012)

    Article  Google Scholar 

  100. J.H. Davies, The Physics of Low-dimensioanl Semiconductors: An Introduction (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  101. M. Roncaglia, M. Rizzi, J. Dalibard, From rotating atomic rings to quantum Hall states. Sci. Rep. 1, 43 (2011)

    Article  ADS  Google Scholar 

  102. H. Terças, H. Flayac, D.D. Solnyshkov, G. Malpuech, Non-abelian gauge fields in photonic cavities. Phys. Rev. Lett. 112, 066402 (2014)

    Article  ADS  Google Scholar 

  103. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Photonic Floquet topological insulators. Nature 496, 196–200 (2013)

    Article  ADS  Google Scholar 

  104. A.B. Khanikaev, Mousavi S. Hossein, W.-K. Tse, M. Kargarian, A.H. MacDonald, G. Shvets, Photonic topological insulators. Nat. Mater. 12, 233–239 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Navy/SPAWAR Grant N66001-09-1-2024, the Japan Society for the Promotion of Science (JSPS) through its “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)”. We deeply thank our collaborators: Dr. K. Kusudo and Dr. N. Masumoto for experimental measurement and device fabrication; Prof. A. Forchel, Dr. S. Höfling, Dr. A. Löffler for providing the wafers; Prof. T. Fujisawa, Dr. N. Kumada for supporting the device fabrication; Prof. T. Byrnes, Prof. C. Wu, Dr. Z. Cai for theoretical discussions. N.Y.K thank Dr. C. Langrock for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Young Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kim, N.Y., Yamamoto, Y. (2017). Exciton-Polariton Quantum Simulators. In: Angelakis, D. (eds) Quantum Simulations with Photons and Polaritons. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-52025-4_5

Download citation

Publish with us

Policies and ethics