Skip to main content

Organic/Silica Nanocomposite Membranes

  • Chapter
  • First Online:
Organic-Inorganic Composite Polymer Electrolyte Membranes

Abstract

Nanoscience and nanotechnology has become a versatile and promising subject for producing new materials with enhanced properties and potential applications. In this regard, nanoparticles (NPs) have received growing attention in every sector of science and technology. The size, shape, structure, and chemical properties of engineered NPs open a vast range of technical applications and novel approaches in basic research science. Among the variety of NPs, silica NP is of a particular interest due to its ease of synthesis, functionalization, and precise controlling of size and distribution of particles. Superior features of polymeric membranes especially flexibility and processability have made them one of the best candidates for commercial applications. Meanwhile, despite of the outstanding characteristics of these membranes, their application is still limited due to the trade-off trend between gas permeability and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEM:

Anion-exchange membrane

AgNPs:

Silver nanoparticles

AFM:

Atomic force microscopy

CO2 :

Carbon dioxide

CTAB:

Cetyl trimethyl ammonium bromide

CEM:

Cation-exchange membrane

CMC:

Carboxy methyl cellulose

DMA:

Dynamic mechanical analysis

DSC:

Differential scanning calorimetry

EG:

Ethylene glycol

EDX:

Energy dispersive X-ray spectroscopy

Fe3O4 :

Iron oxide

FS:

Fumed silica

FTIR:

Fourier transform infrared

FFV:

Fractional free volume

FE:

Field emission

FO:

Forward osmosis

H2 :

Hydrogen

HfO2 :

Hafnium dioxide

IPDI:

Isophorone diisocyanate

IP:

Interfacial polymerization

ILMS:

Ionic liquid-modified silica

MMMs:

Mixed matrix membranes

MPTES:

Mercapto propyl triethoxy silane

NPs:

Nanoparticles

NR:

Natural rubber

N2 :

Nitrogen

NMR:

Nuclear magnetic resonance

O2 :

Oxygen

OPBI:

Poly (oxyphenylene benzimidazole)

PEBA:

Poly (ether block amide)

PVDF-HFP:

Poly (vinylidene fluoride-hexafluoropropylene)

PBI:

Polybenzimidazole

PEEK:

Polyether ether ketone

PES:

Polyethersulfone

PMMA:

Poly (methyl methacrylate)

PDMC:

Poly (2-methacryloyloxy ethyl trimethyl ammonium chloride)

PDMOS:

Polydimethoxysiloxane

PEBAX:

Poly (amide-6-b-ethylene oxide)

PI:

Phase inversion

PP:

Polypropylene

PE:

Polyethylene

PEG:

Poly (ethylene glycol)

PPG:

Poly (propylene glycol)

PEMFC:

Proton-exchange membrane fuel cell

PVA:

Poly (vinyl alcohol)

PEC:

Polyelectrolyte complex

PDMS:

Polydimethylsiloxane

PWA:

Phosphotungstic acid

PHEMA:

Poly (2-hydroxy ethyl methacrylate)

PEI:

Poly (ethylenimine)

PPO:

Poly (phenylene oxide)

RO:

Reverse osmosis

SiO2 :

Silicon dioxide

SBR:

Styrene-butadiene rubber

SBA:

Santa Barbara Amorphous

SEM:

Scanning electron microscopy

SAXS:

Small-angle X-ray scattering

SA-SNP:

Sulfonated silica nanoparticles

SDS:

Sodium dodecyl sulfate

TiO2 :

Titanium dioxide

TiSiO4 :

Titanium (IV) orthosilicate

Tg:

Glass transition temperature

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

TEOS:

Tetraethyl orthosilicate

UV:

Ultraviolet

UF:

Ultrafiltration

VRFBS:

Vanadium redox flow batteries

WAXD:

Wide-angle X-ray diffraction

XRD:

X-ray diffraction

ZnO:

Zinc oxide

ZrO2 :

Zirconium dioxide

References

  1. Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275

    Article  CAS  Google Scholar 

  2. Khoonsap S, Supanchaiyamat N, Hunt AJ et al (2015) Improving water selectivity of poly(vinyl alcohol) (PVA)—fumed silica (FS) nanocomposite membranes by grafting of poly (2-hydroxyethyl methacrylate) (PHEMA) on fumed silica particles. Chem Eng Sci 122:373–383

    Article  CAS  Google Scholar 

  3. Tian M, Yi-NingWang RW et al (2016) Synthesis and characterization of thin film nanocomposite forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate. Desalination. doi:10.1016/j.desal.2016.04.003

    Google Scholar 

  4. Leung PK, Xu Q, Zhao TS et al (2013) Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries. Electrochim Acta 105:584–592

    Article  CAS  Google Scholar 

  5. Akbari A, Yegani R, Pourabbas Behzad (2016) Synthesis of high dispersible hydrophilic poly(ethylene glycol)/vinyl silane grafted silica nanoparticles to fabricate protein repellent polyethylene nanocomposite. Eur Polym J 81:86–97

    Article  CAS  Google Scholar 

  6. Nadargi D, Gurav J, Marioni M et al (2015) Methyltrimethoxysilane (MTMS)-based silica–iron oxide superhydrophobic nanocomposites. J Colloid Interface Sci 459:123–126

    Article  CAS  Google Scholar 

  7. Takahashi S, Paul DR (2006) Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: without chemical coupling to matrix. Polym 47:7519–7534

    Article  CAS  Google Scholar 

  8. Takahashi S, Paul DR (2006) Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 2: with chemical coupling to matrix. Polym 47:7535–7547

    Article  CAS  Google Scholar 

  9. Maity S, Singha S, Jana T (2015) Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica. Polym 66:76–85

    Article  CAS  Google Scholar 

  10. Devrim Y, Devrim H (2015) PEM fuel cell short stack performances of silica doped nanocomposite membranes. Int J Hydrogen Energy 40:7870–7878

    Article  CAS  Google Scholar 

  11. Ghadimi A, Mohammadi T, Kasiri N (2015) Gas permeation, sorption and diffusion through PEBA/SiO2 nanocomposite membranes (chemical surface modification of nanoparticles). Int J Hydrogen Energy 40:9723–9732

    Article  CAS  Google Scholar 

  12. Roelofs KS, Hirth T, Schiestel T (2010) Sulfonated poly(ether ether ketone)-based silica nanocomposite membranes for direct ethanol fuel cells. J Membr Sci 346:215–226

    Article  CAS  Google Scholar 

  13. Zeng J, Shen PK, Shanfu Lu et al (2012) Correlation between proton conductivity, thermal stability and structural symmetries in novel HPW-meso-silica nanocomposite membranes and their performance in direct methanol fuel cells. J Membr Sci 397:92–101

    Article  Google Scholar 

  14. Naghsh M, Sadeghi M, Moheb A et al (2012) Separation of ethylene/ethane and propylene/propane by cellulose acetate–silicanano composite membranes. J Membr Sci 423:97–106

    Article  Google Scholar 

  15. Huang J, Zhang K, Wang K et al (2012) Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J Membr Sci 423:362–370

    Article  Google Scholar 

  16. Treekamol Y, Schieda M, Robitaille L et al (2014) Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells. J Power Sour 246:950–959

    Article  CAS  Google Scholar 

  17. Tancharernrat T, Rempel GL, Prasassarakich Pattarapan (2014) Preparation of styrene butadiene copolymer–silica nanocomposites via differential micro emulsion polymerization and NR/SBR–SiO2 membranes for pervaporation of water–ethanol mixtures. Chem Eng J 258:290–300

    Article  CAS  Google Scholar 

  18. Torabi B, Ameri E (2016) Methyl acetate production by coupled esterification-reaction process using synthesized cross-linked PVA/silica nanocomposite membranes. Chem Eng J 288:461–472

    Article  CAS  Google Scholar 

  19. Huang K-Y, Weng C-J, Huang L-T et al (2010) Systematically comparative studies on the preparation and physical properties of PMMA–silica mesocomposite and nanocomposite membranes. Micropor Mesopor Mater 131:192–203

    Article  CAS  Google Scholar 

  20. Liu T, An Q-F, Wang X-S et al (2014) Preparation and properties of PEC nanocomposite membranes with carboxymethyl cellulose and modified silica. Carbohyd Polym 106:403–409

    Article  CAS  Google Scholar 

  21. Li Q, Hui Y, Feiyang W et al (2016) Fabrication of semi-aromatic polyamide/spherical mesoporous silica nanocomposite reverse osmosis membrane with superior permeability. Appl Surf Sci 363:338–345

    Article  CAS  Google Scholar 

  22. Seck S, Magana S, Prebe A et al (2015) PVDF-HFP/silica-SH nanocomposite synthesis for PEMFC membranes through simultaneous one-step solegel reaction and reactive extrusion. Mater Chem Phys 163:54–62

    Article  CAS  Google Scholar 

  23. Ahsani M, Yegani R (2015) Study on the fouling behavior of silica nanocomposite modified polypropylene membrane in purification of collagen protein. Chem Eng Res Des 102:261–273

    Article  CAS  Google Scholar 

  24. Zhuang G-L, Wey M-Y, Tseng H-H (2015) The density and crystallinity properties of PPO-silica mixed-matrix membranes produced via the in situ sol-gel method for H2/CO2 separation. II: effect of thermal annealing treatment. Chem Eng Res Des 104:319–332

    Article  CAS  Google Scholar 

  25. Nambi Krishnan N, Henkensmeier D, Jang Jong Hyun et al (2011) Sulfonated poly (ether sulfone)-based silica nanocomposite membranes for high temperature polymer electrolyte fuel cell applications. Int J Hydrogen Energy 36:7152–7161

    Article  Google Scholar 

  26. Salarizadeh P, Javanbakht M, Abdollahi M et al (2013) Preparation, characterization and properties of proton exchange nanocomposite membranes based on poly(vinyl alcohol) and poly(sulfonic acid)-grafted silica nanoparticles. Int J Hydrogen Energy 38:5473–5479

    Article  CAS  Google Scholar 

  27. Shahabadi R, Abdollahi M, Sharif A (2015) Preparation, characterization and properties of polymer electrolyte nanocomposite membranes containing silica nanoparticles modified via surface-initiated atom transfer radical polymerization. Int J Hydrogen Energy 40:3749–3761

    Article  CAS  Google Scholar 

  28. Suryani Y-LL (2009) Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes. J Membr Sci 332:121–128

    Article  CAS  Google Scholar 

  29. Liu D, Geng L, Yuqin F et al (2011) Novel nanocomposite membranes based on sulfonated mesoporous silica nanoparticles modified sulfonated polyimides for direct methanol fuel cells. J Membr Sci 366:251–257

    Article  CAS  Google Scholar 

  30. Sadeghia M, Semsarzadeh MA, Barikani M et al (2011) Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. J Membr Sci 376:188–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palaniappan Sathish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sathish Kumar, P., Pal, S.K., Chinnasamy, M., Rajasekar, R. (2017). Organic/Silica Nanocomposite Membranes. In: Inamuddin, D., Mohammad, A., Asiri, A. (eds) Organic-Inorganic Composite Polymer Electrolyte Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-52739-0_3

Download citation

Publish with us

Policies and ethics