Skip to main content

Adsorption and Desorption Properties of Carbon Nanomaterials, the Potential for Water Treatments and Associated Risks

  • Chapter
  • First Online:
Nanotechnologies for Environmental Remediation

Abstract

The water technologies based on the physicochemical adsorption are methods extensively used because are fast, efficient, and cost effective. In this regard, the adsorption capabilities of carbonaceous materials have been widely exploited. From the activated carbon, fullerenes, carbon nanotubes (CNTs) to the latest graphene-based materials are highly efficient for contaminant removal from aqueous solution because of their large specific surface area, porosity, and reactivity, in particular, in the case of carbon nanomaterials (CNMs). In this chapter, the adsorption properties and mechanisms of CNMs are revised. The recent developments for contaminants removal from aqueous systems are provided, the most relevant works discussed, and the development tendency of adsorbents are analysed in detail. However the potential of CNMs as emerging environmental contaminants should be as well deemed. Therefore, the methods to minimize the impact of the use of these new materials in waters technology are account and, the studies on the environmental occurrence, fate and behaviour of CNMs as emerging contaminants will be presented. To conclude, the potential associated risks of CNMs as environmental contaminants is considered, with particular attention to their influence on the toxicity modulation of co-contaminants in the same compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham JK et al (2004) A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Mater Struct 13(5):1045–1049

    Article  Google Scholar 

  • Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5):1853–1860

    Article  Google Scholar 

  • AlSaadi MA et al (2016) Removal of cadmium from water by CNT-PAC composite: effect of functionalization. Nano 11(1)

    Google Scholar 

  • Al-Saidi HM et al (2016) Multi-walled carbon nanotubes as an adsorbent material for the solid phase extraction of bismuth from aqueous media: kinetic and thermodynamic studies and analytical applications. J Mol Liq 216:693–698

    Article  Google Scholar 

  • Álvarez-Torrellas S et al (2016) Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem Eng J 283:936–947

    Article  Google Scholar 

  • Amiraslanzadeh S (2016) The effect of doping different heteroatoms on the interaction and adsorption abilities of fullerene. Heteroat Chem 27(1):23–31

    Article  Google Scholar 

  • Aroutiounian VM (2015) Gas sensors based on functionalized carbon nanotubes. Front Struct Civil Eng 9(4):333–354

    Google Scholar 

  • Arvidsson R, Molander S, Sandén BA (2013) Review of potential environmental and health risks of the nanomaterial graphene. Hum Ecol Risk Assess Int J 19(4):873–887

    Google Scholar 

  • Astefanei A, Núñez O, Galceran MT (2015) Characterisation and determination of fullerenes: a critical review. Anal Chim Acta 882:1–21

    Article  Google Scholar 

  • Azevedo Costa CL et al (2012) In vitro evaluation of co-exposure of arsenium and an organic nanomaterial (fullerene, C 60) in zebrafish hepatocytes. Comp Biochem Physiol C Toxicol Pharmacol 155(2):206–212

    Google Scholar 

  • Azimi S et al (2014) Synthesis, characterization and antibacterial activity of chlorophyllin functionalized graphene oxide nanostructures. Sci Adv Mat 6(4):771–781

    Article  Google Scholar 

  • Badhulika S, Myung NV, Mulchandani A (2014) Conducting polymer coated single-walled carbon nanotube gas sensors for the detection of volatile organic compounds. Talanta 123:109–114

    Article  Google Scholar 

  • Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1(2):180–192

    Article  Google Scholar 

  • Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792

    Article  Google Scholar 

  • Baun A et al (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86(3):379–387

    Article  Google Scholar 

  • Becker L et al (1994) Fullerenes in the 1.85-billion-year-old Sudbury impact structure. Science 265(5172):642–645

    Article  Google Scholar 

  • Bellucci S (2009) Nanoparticles and nanodevices in biological applications

    Google Scholar 

  • Bénard P, Chahine R (2007) Storage of hydrogen by physisorption on carbon and nanostructured materials. Scripta Mater 56(10):803–808

    Article  Google Scholar 

  • Brant J, Lecoanet H, Wiesner M (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7(4–5):545–553

    Article  Google Scholar 

  • Brant JA et al (2007) Fullerol cluster formation in aqueous solutions: implications for environmental release. J Colloid Interface Sci 314(1):281–288

    Article  Google Scholar 

  • Buseck PR (2002) Geological fullerenes: review and analysis. Earth Planet Sci Lett 203(3–4):781–792

    Article  Google Scholar 

  • Buseck PR, Adachi K (2008) Nanoparticles in the atmosphere. Elements 4(6):389–394

    Article  Google Scholar 

  • Cabria I, López MJ, Alonso JA (2005) Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping. J Chem Phys 123(20)

    Google Scholar 

  • Carboni A et al (2014) An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection. Anal Chim Acta 807:159–165

    Article  Google Scholar 

  • Carboni A et al (2016) A method for the determination of fullerenes in soil and sediment matrices using ultra-high performance liquid chromatography coupled with heated electrospray quadrupole time of flight mass spectrometry. J Chromatogr A 1433:123–130

    Article  Google Scholar 

  • Chandrakumar KRS, Ghosh SK (2008) Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene: an ab initio study. Nano Lett 8(1):13–19

    Article  Google Scholar 

  • Chang X, Bouchard DC (2013) Multiwalled carbon nanotube deposition on model environmental surfaces. Environ Sci Technol 47(18):10372–10380

    Google Scholar 

  • Chang YN et al (2016) Antimicrobial behavior comparison and antimicrobial mechanism of silver coated carbon nanocomposites. Process Saf Environ Prot 102:596–605

    Article  Google Scholar 

  • Chao YC, Shih JS (1998) Adsorption study of organic molecules on fullerene with piezoelectric crystal detection system. Anal Chim Acta 374(1):39–46

    Article  Google Scholar 

  • Chao Y et al (2014) Development of novel graphene-like layered hexagonal boron nitride for adsorptive removal of antibiotic gatifloxacin from aqueous solution. Green Chem Lett Rev 7(4):330–336

    Article  Google Scholar 

  • Chawla J, Kumar R, Kaur I (2015) Carbon nanotubes and graphenes as adsorbents for adsorption of lead ions from water: a review. J Water Supply Res Technol AQUA 64(6):641–659

    Article  Google Scholar 

  • Chen P et al (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285(5424):91–93

    Article  Google Scholar 

  • Chen Z, Westerhoff P, Herckes P (2008) Quantification of C60 fullerene concentrations in water. Environ Toxicol Chem 27(9):1852–1859

    Article  Google Scholar 

  • Chen S, Liu D, Wang H (2015a) Preparation of modified multiwalled carbon nanotubes/chitosan composites and their antifouling properties. Huagong Xuebao/CIESC J 66(11):4689–4695

    Google Scholar 

  • Chen JH et al (2015b) Highly effective removal of Cu(II) by triethylenetetramine-magnetic reduced graphene oxide composite. Appl Surf Sci 356:355–363

    Article  Google Scholar 

  • Chen L et al (2016) One-step fabrication of amino functionalized magnetic graphene oxide composite for Uranium(VI) removal. J Colloid Interface Sci 472:99–107

    Article  Google Scholar 

  • Chibante LPF, Heymann D (1993) On the geochemistry of fullerenes: stability of C60 in ambient air and the role of ozone. Geochim Cosmochim Acta 57(8):1879–1881

    Article  Google Scholar 

  • Chung H et al (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74(4):569–575

    Article  Google Scholar 

  • Commission E (2013) Commission Delegated Regulation (EU) No 1363/2013

    Google Scholar 

  • Czech B, Oleszczuk P (2016) Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV. Chemosphere 149:272–278

    Article  Google Scholar 

  • Dai H et al (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260(3–4):471–475

    Article  Google Scholar 

  • Davydov VY et al (2000) Thermodynamic characteristics of adsorption of organic compounds on molecular crystals of C60 fullerene. Zh Fiz Khim 74(4):712–717

    Google Scholar 

  • De La Torre-Roche R et al (2013) multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47(21):12539–12547

    Article  Google Scholar 

  • De Martino A et al (2012) Removal of 4-chloro-2-methylphenoxyacetic acid from water by sorption on carbon nanotubes and metal oxide nanoparticles. RSC Adv 2(13):5693–5700

    Article  Google Scholar 

  • Derjaguin BV, Churaev NV, Muller VM (1987) Wetting films. In: Surface forces. Springer, pp 327–367

    Google Scholar 

  • Deryabin DG et al (2014) The activity of [60]fullerene derivatives bearing amine and carboxylic solubilizing groups against Escherichia coli: a comparative study. J Nanomat 2014

    Google Scholar 

  • Dhall S, Jaggi N, Nathawat R (2013) Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens Actuators, A 201:321–327

    Article  Google Scholar 

  • Dillon AC et al (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623):377–379

    Article  Google Scholar 

  • Dinesh R et al (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173:19–27

    Article  Google Scholar 

  • Dong L, Henderson A, Field C (2012) Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J Nanotechnol

    Google Scholar 

  • Dosunmu E et al (2015) Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect. Int J Nanomed 10:5025–5034

    Article  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Saito R (1992) Carbon fibers based on C60 and their symmetry. Phys Rev B 45(11):6234–6242

    Article  Google Scholar 

  • Duncan LK, Jinschek JR, Vikesland PJ (2007) C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge. Environ Sci Technol 42(1):173–178

    Article  Google Scholar 

  • Edgington AJ et al (2014) Microscopic investigation of single-wall carbon nanotube uptake by Daphnia magna. Nanotoxicology 8(SUPPL 1):2–10

    Article  Google Scholar 

  • El-Barbary AA (2016) Potential energy of H2 inside the C116 fullerene dimerization: an atomic analysis. J Mol Struct 1112:9–13

    Article  Google Scholar 

  • Er S, De Wijs GA, Brocks G (2015) Improved hydrogen storage in Ca-decorated boron heterofullerenes: a theoretical study. J Mat Chem A 3(15):7710–7714

    Article  Google Scholar 

  • Esquivel EV, Murr LE (2004) A TEM analysis of nanoparticulates in a Polar ice core. Mater Charact 52(1):15–25

    Article  Google Scholar 

  • Fang J et al (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41(7):2636–2642

    Article  Google Scholar 

  • Farré M et al (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393(1):81–95

    Article  Google Scholar 

  • Farré Ml et al (2010) First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383:44–51

    Google Scholar 

  • Fastow M et al (1992) IR spectra of CO and NO adsorbed on C60. J Phys Chem 96(15):6126–6128

    Article  Google Scholar 

  • Fastow M, Kozirovski Y, Folman M (1993) IR spectra of CO2 and N2O adsorbed on C60 and other carbon allotropes—a comparative study. J Electron Spectrosc Relat Phenom 64–65(C):843–848

    Google Scholar 

  • Folman M, Fastow M, Kozirovski Y (1997) Surface heterogeneity of C60 as studied by infrared spectroscopy of adsorbed CO and adsorption potential calculations. Langmuir 13(5):1118–1122

    Article  Google Scholar 

  • Fortner JD et al (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39(11):4307–4316

    Article  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  Google Scholar 

  • Fu Y et al (2014) Water-dispersible magnetic nanoparticle-graphene oxide composites for selenium removal. Carbon 77:710–721

    Article  Google Scholar 

  • Gao Y et al (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546

    Article  Google Scholar 

  • Goel A et al (2002) Combustion synthesis of fullerenes and fullerenic nanostructures. Carbon 40(2):177–182

    Article  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145–1155

    Article  Google Scholar 

  • Guo T et al (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243(1–2):49–54

    Article  Google Scholar 

  • Guo X et al (2013) Biological uptake and depuration of radio-labeled graphene by Daphnia magna. Environ Sci Technol 47(21):12524–12531

    Article  Google Scholar 

  • Guo Y et al (2016) Removal of anionic azo dye from water with activated graphene oxide: kinetic, equilibrium and thermodynamic modeling. RSC Adv 6(46):39762–39773

    Article  Google Scholar 

  • Gupta VK et al (2016) Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Env Sci Technol 46(2):93–118

    Article  Google Scholar 

  • Hao X et al (2015) Metal ion-coordinated carboxymethylated chitosan grafted carbon nanotubes with enhanced antibacterial properties. RSC Adv 6(1):39–43

    Article  Google Scholar 

  • Hendren CO et al (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45(7):2562–2569

    Article  Google Scholar 

  • Heymann D (1996) Solubility of fullerenes C60 and C70 in seven normal alcohols and their deduced solubility in water. Fullerene Sci Technol 4(3):509–515

    Article  Google Scholar 

  • Hilding J et al (2001) Sorption of butane on carbon multiwall nanotubes at room temperature. Langmuir 17(24):7540–7544

    Article  Google Scholar 

  • Hou W-C, Jafvert CT (2008) Photochemical transformation of aqueous C60 clusters in sunlight. Environ Sci Technol 43(2):362–367

    Article  Google Scholar 

  • Hwang YS, Li Q (2010) Characterizing photochemical transformation of aqueous nC60 under environmentally relevant conditions. Environ Sci Technol 44(8):3008–3013

    Article  Google Scholar 

  • Ihsanullah et al (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161

    Google Scholar 

  • Isaacson CW et al (2007) Quantification of fullerenes by LC/ESI-MS and its application to in vivo toxicity assays. Anal Chem 79(23):9091–9097

    Article  Google Scholar 

  • Ismail IMK, Rodgers SL (1992) Comparisons between fullerene and forms of well-known carbons. Carbon 30(2):229–239

    Article  Google Scholar 

  • Jafvert CT, Kulkarni PP (2008) Buckminsterfullerene’s (C60) octanol-water partition coefficient (Kow) and aqueous solubility. Environ Sci Technol 42(16):5945–5950

    Article  Google Scholar 

  • Jehlička J et al (2003) Evidence for fullerenes in solid bitumen from pillow lavas of Proterozoic age from Mítov (Bohemian Massif, Czech Republic). Geochim Cosmochim Acta 67(8):1495–1506

    Article  Google Scholar 

  • Ji L et al (2010) Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environ Sci Technol 44(16):6429–6436

    Article  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89

    Article  Google Scholar 

  • Jiang Y et al (2016) Magnetic chitosan-graphene oxide composite for anti-microbial and dye removal applications. Int J Biol Macromol 82:702–710

    Article  Google Scholar 

  • Jin X et al (2007) Estrogenic compounds removal by fullerene-containing membranes. Desalination 214(1–3):83–90

    Article  Google Scholar 

  • Jing L, Li X (2016) Facile synthesis of PVA/CNTs for enhanced adsorption of Pb2+ and Cu2+ in single and binary system. Desalin Water Treat 1–14

    Google Scholar 

  • Johansen A et al (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27(9):1895–1903

    Article  Google Scholar 

  • Journet C et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758

    Article  Google Scholar 

  • Kang S et al (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673

    Article  Google Scholar 

  • Kang S et al (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413

    Article  Google Scholar 

  • Karakuscu A et al (2015) SiOCN functionalized carbon nanotube gas sensors for elevated temperature applications. J Am Ceram Soc 98(4):1142–1149

    Article  Google Scholar 

  • Karumuri AK et al (2016) Silver nanoparticles supported on carbon nanotube carpets: influence of surface functionalization. Nanotechnology 27(14)

    Google Scholar 

  • Khan IA et al (2013) Single-walled carbon nanotube transport in representative municipal solid waste landfill conditions. Environ Sci Technol 47(15):8425–8433

    Google Scholar 

  • Kim HH et al (2015) Clean transfer of wafer-scale graphene via liquid phase removal of polycyclic aromatic hydrocarbons. ACS Nano 9(5):4726–4733

    Article  Google Scholar 

  • Klaper R et al (2010) Functionalization impacts the effects of carbon nanotubes on the immune system of rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 100(2):211–217

    Article  Google Scholar 

  • Kolkman A et al (2013) Analysis of (functionalized) fullerenes in water samples by liquid chromatography coupled to high-resolution mass spectrometry. Anal Chem 85(12):5867–5874

    Article  Google Scholar 

  • Kroto HW et al (1985) C60: Buckminsterfullerene. Nature 318(6042):162–163

    Article  Google Scholar 

  • Kwon YK (2010) Hydrogen adsorption on sp2-bonded carbon structures: ab-initio study. J Korean Phys Soc 57(4):778–786

    Article  Google Scholar 

  • Lai YT, Kuo JC, Yang YJ (2014) A novel gas sensor using polymer-dispersed liquid crystal doped with carbon nanotubes. Sens Actuators, A 215:83–88

    Article  Google Scholar 

  • Lammel T, Boisseaux P, Navas JM (2015) Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1. Environ Toxicol 30(10):1192–1204

    Article  Google Scholar 

  • Lawal AT (2016) Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater Res Bull 73:308–350

    Article  Google Scholar 

  • Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49(3):741–772

    Article  Google Scholar 

  • Lee J et al (2009) Transformation of aggregated C60 in the aqueous phase by UV irradiation. Environ Sci Technol 43(13):4878–4883

    Article  Google Scholar 

  • Lee KJ, Cha E, Park HD (2016) High antibiofouling property of vertically aligned carbon nanotube membranes at a low cross-flow velocity operation in different bacterial solutions. Desalin Water Treat 1–11

    Google Scholar 

  • Leid JG et al (2012) In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 67(1):138–148

    Article  Google Scholar 

  • Lerman I et al (2013) Adsorption of carbamazepine by carbon nanotubes: effects of DOM introduction and competition with phenanthrene and bisphenol A. Environ Pollut 182:169–176

    Article  Google Scholar 

  • Li YH et al (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  Google Scholar 

  • Li YH et al (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39(4):605–609

    Article  Google Scholar 

  • Li D et al (2008a) Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension. Environ Toxicol Chem 27(9):1888–1894

    Article  Google Scholar 

  • Li Y et al (2008b) Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. Environ Sci Technol 42(19):7174–7180

    Article  Google Scholar 

  • Li N et al (2011) Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. J Solid State Chem 184(4):953–958

    Article  Google Scholar 

  • Li Y et al (2012a) One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations, properties and applications. Crit Rev Solid State Mater Sci 37(1):1–74

    Article  Google Scholar 

  • Li S et al (2012b) Fabrication of magnetic Ni nanoparticles functionalized water-soluble graphene sheets nanocomposites as sorbent for aromatic compounds removal. J Hazard Mater 229–230:42–47

    Article  Google Scholar 

  • Li J, Liu CY, Liu Y (2012c) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22(17):8426–8430

    Article  Google Scholar 

  • Li Y et al (2012d) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater Res Bull 47(8):1898–1904

    Article  Google Scholar 

  • Li H et al (2016) Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes. Chemosphere 154:258–265

    Article  Google Scholar 

  • Liu C et al (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442):1127–1129

    Article  Google Scholar 

  • Liu Z et al (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci 105(5):1410–1415

    Article  Google Scholar 

  • Liu F et al (2012a) Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl Mat Interfaces 4(2):922–927

    Article  Google Scholar 

  • Liu T et al (2012b) Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf, B 90(1):197–203

    Google Scholar 

  • Liu YZ et al (2016a) Antibacterial properties of multi-walled carbon nanotubes decorated with silver nanoparticles. Curr Nanosci 12(4):411–415

    Article  Google Scholar 

  • Liu Y et al (2016b) Synthesis of magnetic polyaniline/graphene oxide composites and their application in the efficient removal of Cu(II) from aqueous solutions. J Env Chem Eng 4(1):825–834

    Article  Google Scholar 

  • Liu F et al (2016c) Magnetic porous silica-graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol. Colloids Surf, A 490:207–214

    Article  Google Scholar 

  • Lovern S, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25(4):1132–1137

    Article  Google Scholar 

  • Lubezky A, Kozirovski Y, Folman M (1993) Induced IR spectra of N2 and O2 adsorbed on evaporated films of ionic crystals. J Phys Chem 97(5):1050–1054

    Article  Google Scholar 

  • Lubezky A, Chechelnitsky L, Folman M (1996) IR spectra of CH4, CD4, C2H4, C2H2, CH3OH and CH3OD adsorbed on C60 films. J Chem Soc Faraday Trans 92(12):2269–2274

    Article  Google Scholar 

  • Lubezky A, Kozirovski Y, Folman M (1998) IR spectral shifts and adsorption potentials of CO and N2 adsorbed on LiF and LiCl. J Electron Spectrosc Relat Phenom 95(1):37–44

    Article  Google Scholar 

  • Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42(21):8127–8132

    Article  Google Scholar 

  • Lyon DY et al (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366

    Article  Google Scholar 

  • Lyon DY et al (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett 8(5):1539–1543

    Article  Google Scholar 

  • Magrez A et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125

    Article  Google Scholar 

  • Mananghaya M (2015) Hydrogen adsorption of novel N-doped carbon nanotubes functionalized with Scandium. Int J Hydrogen Energy 40(30):9352–9358

    Article  Google Scholar 

  • Manna SK et al (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kB in human keratinocytes. Nano Lett 5(9):1676–1684

    Article  Google Scholar 

  • Mesarič T et al (2013) Effects of nano carbon black and single-layer graphene oxide on settlement, survival and swimming behaviour of Amphibalanus amphitrite larvae. Chem Ecol 29(7):643–652

    Article  Google Scholar 

  • Meyyappan M (2016) Carbon nanotube-based chemical sensors. Small 12(16):2118–2129

    Article  Google Scholar 

  • Mochalin VN et al (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23

    Article  Google Scholar 

  • Mortazavi SS, Farmany A (2016) High adsorption capacity of MWCNTs for removal of anionic surfactant SDBS from aqueous solutions. J Water Supply: Res Technol AQUA 65(1):37–42

    Google Scholar 

  • Mu H et al (2014) Fabrication and characterization of amino group functionalized multiwall carbon nanotubes (MWCNT) formaldehyde gas sensors. IEEE Sens J 14(7):2362–2368

    Article  Google Scholar 

  • Muller J et al (2008) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol 21(9):1698–1705

    Article  Google Scholar 

  • Murr LE, Soto KF (2005) A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources. Mater Charact 55(1):50–65

    Article  Google Scholar 

  • Murr LE et al (2004a) Chemistry and nanoparticulate compositions of a 10,000 year-old ice core melt water. Water Res 38(19):4282–4296

    Article  Google Scholar 

  • Murr LE et al (2004b) Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. J Nanopart Res 6(2):241–251

    Article  Google Scholar 

  • Murr L et al (2006) Combustion-generated nanoparticulates in the El Paso, TX, USA/Juarez, Mexico Metroplex: their comparative characterization and potential for adverse health effects. Int J Env Res Public Health 3(1):48–66

    Article  Google Scholar 

  • Murray AR et al (2009) Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257(3):161–171

    Article  Google Scholar 

  • Naghadeh SB et al (2016) Functionalized MWCNTs effects on dramatic enhancement of MWCNTs/SnO2 nanocomposite gas sensing properties at low temperatures. Sens Actuators, B Chem 223:252–260

    Article  Google Scholar 

  • Nakagawa T, Kokubo K, Moriwaki H (2014) Application of fullerenes-extracted soot modified with ethylenediamine as a novel adsorbent of hexavalent chromium in water. J Env Chem Eng 2(2):1191–1198

    Article  Google Scholar 

  • Nakamura S, Mashino T (2009) Biological activities of water-soluble fullerene derivatives. J Phys Conf Ser 159

    Google Scholar 

  • Navarro DA et al (2013) Behaviour of fullerenes (C60) in the terrestrial environment: potential release from biosolids-amended soils. J Hazard Mater 262:496–503

    Article  Google Scholar 

  • Ncibi MC, Sillanpää M (2015) Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J Hazard Mater 298:102–110

    Article  Google Scholar 

  • Ncibi MC, Gaspard S, Sillanpää M (2015) As-synthesized multi-walled carbon nanotubes for the removal of ionic and non-ionic surfactants. J Hazard Mater 286:195–203

    Article  Google Scholar 

  • Núñez O et al (2012) Atmospheric pressure photoionization mass spectrometry of fullerenes. Anal Chem 84(12):5316–5326

    Article  Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058

    Article  Google Scholar 

  • Oyetade OA et al (2015) Effectiveness of carbon nanotube-cobalt ferrite nanocomposites for the adsorption of rhodamine B from aqueous solutions. RSC Adv 5(29):22724–22739

    Article  Google Scholar 

  • Oyetade OA et al (2016) Nitrogen-functionalised carbon nanotubes as a novel adsorbent for the removal of Cu(ii) from aqueous solution. RSC Adv 6(4):2731–2745

    Article  Google Scholar 

  • Ozturk Z, Baykasoglu C, Kirca M (2016) Sandwiched graphene-fullerene composite: a novel 3-D nanostructured material for hydrogen storage. Int J Hydrogen Energy 41(15):6403–6411

    Article  Google Scholar 

  • Pakarinen K et al (2011) Adverse effects of fullerenes (nC60) spiked to sediments on Lumbriculus variegatus (Oligochaeta). Environ Pollut 159(12):3750–3756

    Article  Google Scholar 

  • Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42(24):9005–9013

    Article  Google Scholar 

  • Papirer E et al (1999) Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography. Carbon 37(8):1265–1274

    Article  Google Scholar 

  • Park JW et al (2011) The association between nC 60 and 17α-ethinylestradiol (EE2) decreases EE2 bioavailability in zebrafish and alters nanoaggregate characteristics. Nanotoxicology 5(3):406–416

    Article  Google Scholar 

  • Patchkovskii S et al (2005) Graphene nanostructures as tunable storage media for molecular hydrogen. Proc Natl Acad Sci USA 102(30):10439–10444

    Article  Google Scholar 

  • Pérez S, Farré Ml, Barceló D (2009a) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. TrAC Trends Anal Chem 28(6):820–832

    Article  Google Scholar 

  • Pérez S, Farré MI, Barceló D (2009b) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. TrAC. Trends Anal Chem 28(6):820–832

    Article  Google Scholar 

  • Petersen EJ et al (2009a) Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environ Sci Technol 43(8):2969–2975

    Article  Google Scholar 

  • Petersen EJ et al (2009b) Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms. Environ Sci Technol 43(11):4181–4187

    Article  Google Scholar 

  • Petersen EJ et al (2014) Methods to assess the impact of UV irradiation on the surface chemistry and structure of multiwall carbon nanotube epoxy nanocomposites. Carbon 69:194–205

    Article  Google Scholar 

  • Pinzón JR, Villalta-Cerdas A, Echegoyen L (2012) Fullerenes, carbon nanotubes, and graphene for molecular electronics. In: Topics in current chemistry, pp 127–174

    Google Scholar 

  • Prabhakaran PK, Deschamps J (2015) Room temperature hydrogen uptake in single walled carbon nanotubes incorporated MIL-101 doped with lithium: effect of lithium doping. J Porous Mater 22(6):1635–1642

    Article  Google Scholar 

  • Pretti C et al (2014) Ecotoxicity of pristine graphene to marine organisms. Ecotoxicol Environ Saf 101:138–145

    Article  Google Scholar 

  • Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3):668–674

    Article  Google Scholar 

  • Pupysheva OV, Farajian AA, Yakobson BI (2008) Fullerene nanocage capacity for hydrogen storage. Nano Lett 8(3):767–774

    Article  Google Scholar 

  • Pyrzynska K, Stafiej A, Biesaga M (2007) Sorption behavior of acidic herbicides on carbon nanotubes. Microchim Acta 159(3–4):293–298

    Article  Google Scholar 

  • Qu X, Alvarez PJJ, Li Q (2013) Photochemical transformation of carboxylated multi-walled carbon nanotubes: role of reactive oxygen species. Environ Sci Technol 47(24):14080–14088

    Article  Google Scholar 

  • Ramesha GK et al (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361(1):270–277

    Article  Google Scholar 

  • Russier J et al (2010) Oxidative biodegradation of single-and multi-walled carbon nanotubes. Nanoscale 3(3):893–896

    Article  Google Scholar 

  • Sanchís J et al (2012) Occurrence of aerosol-bound fullerenes in the mediterranean sea atmosphere. Environ Sci Technol 46(3):1335–1343

    Article  Google Scholar 

  • Sanchís J et al (2013) Quantitative trace analysis of fullerenes in river sediment from Spain and soils from Saudi Arabia. Anal Bioanal Chem 405(18):5915–5923

    Article  Google Scholar 

  • Sanchís J et al (2015) Liquid chromatography-atmospheric pressure photoionization-Orbitrap analysis of fullerene aggregates on surface soils and river sediments from Santa Catarina (Brazil). Sci Total Environ 505:172–179

    Article  Google Scholar 

  • Sanchís J et al (2016) New insights on the influence of organic co-contaminants on the aquatic toxicology of carbon nanomaterials. Environ Sci Technol 50(2):961–969

    Article  Google Scholar 

  • Sayes CM et al (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595

    Article  Google Scholar 

  • Sayes CM et al (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161(2):135–142

    Article  Google Scholar 

  • Scalese S et al (2016) Cationic and anionic azo-dye removal from water by sulfonated graphene oxide nanosheets in Nafion membranes. New J Chem 40(4):3654–3663

    Article  Google Scholar 

  • Schwab F et al (2013) Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol 47(13):7012–7019

    Google Scholar 

  • Scott-Fordsmand JJ et al (2008) The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. Ecotoxicol Environ Saf 71(3):616–619

    Article  Google Scholar 

  • Sedaghat S (2015) Anchoring of silver nanoparticles onto functionalized multiwall-carbon nanotube and evaluation of antibacterial effects. Fullerenes, Nanotubes, Carbon Nanostruct 23(6):483–487

    Article  Google Scholar 

  • Sedlmair J et al (2013) Interaction between carbon nanotubes and soil colloids studied with X-ray spectromicroscopy. Chem Geol 329:32–41

    Article  Google Scholar 

  • Sekar M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci 279(2):307–313

    Article  Google Scholar 

  • Shahriary L et al (2015) One-step synthesis of Ag-reduced graphene oxide-multiwalled carbon nanotubes for enhanced antibacterial activities. New J Chem 39(6):4583–4590

    Article  Google Scholar 

  • Shan D et al (2016) Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals. Chem Eng J 294:353–361

    Article  Google Scholar 

  • Sharma M, Madras G, Bose S (2015) Unique nanoporous antibacterial membranes derived through crystallization induced phase separation in PVDF/PMMA blends. J Mat Chem A 3(11):5991–6003

    Article  Google Scholar 

  • Shi H et al (2016) Effect of polyethylene glycol on the antibacterial properties of polyurethane/carbon nanotube electrospun nanofibers. RSC Adv 6(23):19238–19244

    Article  Google Scholar 

  • Shvedova AA et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol-Lung Cell Mol Physiol 289(5):L698–L708

    Article  Google Scholar 

  • Simon-Deckers A et al (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43(21):8423–8429

    Article  Google Scholar 

  • Singh AK, Ribas MA, Yakobson BI (2009) H-spillover through the catalyst saturation: an ab initio thermodynamics study. ACS Nano 3(7):1657–1662

    Article  Google Scholar 

  • Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82(2):94–109

    Article  Google Scholar 

  • Sohn EK et al (2015) Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. BioMed Res Int 2015

    Google Scholar 

  • Sotelo JL et al (2012) Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. J Env Sci Health—Part B Pesticides, Food Contam, Agric Wastes 47(7):640–652

    Article  Google Scholar 

  • Sotoma S et al (2015) Comprehensive and quantitative analysis for controlling the physical/chemical states and particle properties of nanodiamonds for biological applications. RSC Adv 5(18):13818–13827

    Article  Google Scholar 

  • Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58(1):49–52

    Article  Google Scholar 

  • Su F, Lu C (2007) Adsorption kinetics, thermodynamics and desorption of natural dissolved organic matter by multiwalled carbon nanotubes. J Environ Sci Health—Part A Toxic/Hazard Subst Environ Eng 42(11):1543–1552

    Article  Google Scholar 

  • Su Y et al (2013) Risks of single-walled carbon nanotubes acting as contaminants-carriers: potential release of phenanthrene in Japanese Medaka (Oryzias latipes). Environ Sci Technol 47(9):4704–4710

    Article  Google Scholar 

  • Sui Z et al (2012) Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22(18):8767–8771

    Article  Google Scholar 

  • Sun Q et al (2005) Clustering of Ti on a C60 surface and its effect on hydrogen storage. J Am Chem Soc 127(42):14582–14583

    Article  Google Scholar 

  • Sun Q et al (2006) First-principles study of hydrogen storage on Li12C60. J Am Chem Soc 128(30):9741–9745

    Article  Google Scholar 

  • Sun X et al (2015) Removal of sudan dyes from aqueous solution by magnetic carbon nanotubes: equilibrium, kinetic and thermodynamic studies. J Ind Eng Chem 22:373377

    Article  Google Scholar 

  • Taha MR, Mobasser S (2015) Adsorption of DDT and PCB by nanomaterials from residual soil. PLoS ONE 10(12)

    Google Scholar 

  • Tang Y et al (2013) Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf, A 424:74–80

    Article  Google Scholar 

  • Tao X et al (2011) Effects of stable aqueous fullerene nanocrystal (nC60) on Daphnia magna: evaluation of hop frequency and accumulations under different conditions. J Env Sci 23(2):322–329

    Article  Google Scholar 

  • Tegos GP et al (2005) Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol 12(10):1127–1135

    Article  Google Scholar 

  • Tervonen K et al (2011) Analysis of fullerene-C60 and kinetic measurements for its accumulation and depuration in Daphnia magna. Environ Toxicol Chem 29(5):1072–1078

    Google Scholar 

  • Thornton AW et al (2009) Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage. J Am Chem Soc 131(30):10662–10669

    Article  Google Scholar 

  • Tong Z et al (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41(8):2985–2991

    Article  Google Scholar 

  • Van der Ploeg MJC et al (2011) Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics. Environ Pollut 159(1):198–203

    Article  Google Scholar 

  • Van der Ploeg MJC et al (2013) C60 exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus. Nanotoxicology 7(4):432–440

    Article  Google Scholar 

  • Velzeboer I, Peeters ETHM, Koelmans AA (2013) Multiwalled carbon nanotubes at environmentally relevant concentrations affect the composition of benthic communities. Environ Sci Technol 47(13):7475–7482

    Google Scholar 

  • Verwey EJW, Overbeek JTG, Overbeek JTG (1999) Theory of the stability of lyophobic colloids. Courier Dover Publications

    Google Scholar 

  • Wang X et al (2005) Sorption of 243Am(III) to multiwall carbon nanotubes. Environ Sci Technol 39(8):2856–2860

    Article  Google Scholar 

  • Wang C, Shang C, Westerhoff P (2010a) Quantification of fullerene aggregate nC60 in wastewater by high-performance liquid chromatography with UV-vis spectroscopic and mass spectrometric detection. Chemosphere 80(3):334–339

    Google Scholar 

  • Wang Y et al (2010b) Transport and retention of fullerene nanoparticles in natural soils. J Environ Qual 39(6):1925–1933 (All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher)

    Google Scholar 

  • Wang S et al (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–347

    Article  Google Scholar 

  • Wang H et al (2015) Facile synthesis of polypyrrole decorated reduced graphene oxide-Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem Eng J 262:597–606

    Article  Google Scholar 

  • Wang H, Chen Y, Wei Y (2016a) A novel magnetic calcium silicate/graphene oxide composite material for selective adsorption of acridine orange from aqueous solutions. RSC Adv 6(41):34770–34781

    Google Scholar 

  • Wang LP et al (2016b) Adsorption behavior of ACF/CNT composites for Cr(VI) from aqueous solution. In: Material science and environmental engineering—proceedings of the 3rd annual 2015 international conference on material science and environmental engineering, ICMSEE 2015

    Google Scholar 

  • Wiesner MR et al (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    Article  Google Scholar 

  • Wigginton NS, Haus KL, Hochella MF Jr (2007) Aquatic environmental nanoparticles. J Environ Monit 9(12):1306–1316

    Article  Google Scholar 

  • Wu Y-Y, Xiong Z-H (2016) Multi-walled carbon nanotubes and powder-activated carbon adsorbents for the removal of nitrofurazone from aqueous solution. J Dispersion Sci Technol 37(5):613–624

    Article  Google Scholar 

  • Wu HX et al (2013a) In situ growth of monodispersed Fe3O4 nanoparticles on graphene for the removal of heavy metals and aromatic compounds. Water Sci Technol 68(11):2351–2358

    Article  Google Scholar 

  • Wu Q et al (2013b) Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale 5(20):9934–9943

    Article  Google Scholar 

  • Xiao Y, Chae S-R, Wiesner MR (2011) Quantification of fullerene (C60) in aqueous samples and use of C70 as surrogate standard. Chem Eng J 170(2–3):555–561

    Article  Google Scholar 

  • Xing B, Xu J, Huang PM (2010) Environmental and colloidal behavior of engineered nanoparticles. In: Molecular environmental soil science at the interfaces in the Earth’s critical zone. Springer, Berlin, Heidelberg, pp 246–248

    Google Scholar 

  • Xu J, Wang L, Zhu Y (2012) Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28(22):8418–8425

    Article  Google Scholar 

  • Yamaguchi U, Bergamasco NR, Hamoudi S (2016) Magnetic MnFe2O4-graphene hybrid composite for efficient removal of glyphosate from water. Chem Eng J 295:391–402

    Article  Google Scholar 

  • Yan XM et al (2008) Adsorption and desorption of atrazine on carbon nanotubes. J Colloid Interface Sci 321(1):30–38

    Article  Google Scholar 

  • Yan H et al (2016) Efficient removal of chlorophenols from water with a magnetic reduced graphene oxide composite. Sci China Chem 59(3):350–359

    Article  Google Scholar 

  • Yang RT (2000) Hydrogen storage by alkali-doped carbon nanotubes-revisited. Carbon 38(4):623–626

    Article  Google Scholar 

  • Yang S-T et al (2008) Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 181(3):182–189

    Article  Google Scholar 

  • Yang DH et al (2009) Fullerene nanohybrid metal oxide ultrathin films. Curr Appl Phys 9(2 SUPPL)

    Google Scholar 

  • Yang W et al (2010a) Carbon nanomaterials in biosensors: should you use nanotubes or graphene. Angewandte Chemie—Int Ed 49(12):2114–2138

    Article  Google Scholar 

  • Yang C et al (2010b) Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26(20):16013–16019

    Article  Google Scholar 

  • Yang J et al (2013) Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter. Environ Sci Technol 47(24):14034–14043

    Article  Google Scholar 

  • Yang X et al (2014) Fullerene-biomolecule conjugates and their biomedicinal applications. Int J Nanomed 9(1):77–92

    Article  Google Scholar 

  • Yang K, Chen B, Zhu L (2015) Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water. Sci Rep 5

    Google Scholar 

  • Yu Y, Wu L, Zhi J (2014) Diamond nanowires: fabrication, structure, properties, and applications. Angewandte Chemie—Int Ed 53(52):14326–14351

    Article  Google Scholar 

  • Yu JG et al (2015a) Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions. Sci Total Environ 502:70–79

    Article  Google Scholar 

  • Yu F, Ma J, Bi D (2015b) Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environ Sci Pollut Res 22(6):4715–4724

    Article  Google Scholar 

  • Yu F et al (2016) Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere 146:162–172

    Article  Google Scholar 

  • Yun H et al (2013) Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against gram-negative and gram-positive bacteria. Bull Korean Chem Soc 34(11):3261–3264

    Article  Google Scholar 

  • Zhang L et al (2012) Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling. Environ Sci Technol 46(13):7230–7238

    Article  Google Scholar 

  • Zhang C et al (2013) Adsorption of polycyclic aromatic hydrocarbons (fluoranthene and anthracenemethanol) by functional graphene oxide and removal by pH and temperature-sensitive coagulation. ACS Appl Mat Interfaces 5(11):4783–4790

    Article  Google Scholar 

  • Zhang Y et al (2014) Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide-magnetic nanoparticles: adsorption and desorption. J Colloid Interface Sci 421:85–92

    Article  Google Scholar 

  • Zhang C et al (2016) Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution. Water Res 95:103–112

    Article  Google Scholar 

  • Zhao G et al (2011a) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45(24):10454–10462

    Article  Google Scholar 

  • Zhao G et al (2011b) Removal of Pb(ii) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans 40(41):10945–10952

    Article  Google Scholar 

  • Zhao G et al (2012) Preconcentration of U(vi) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41(20):6182–6188

    Article  Google Scholar 

  • Zhao J et al (2014) Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation. Environ Sci Technol 48(1):331–339

    Article  Google Scholar 

  • Zhu X et al (2009) Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11(1):67–75

    Article  Google Scholar 

  • Zhu J et al (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46(2):977–985

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Spanish Ministry of Science and Innovation through the projects Nano-Transfer (ERA-NET SIINN PCIN-2015-182-CO2-01) and Integra-Coast (CGL2014-56530-C4-1-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinella Farré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Farré, M., Sanchís, J., Barceló, D. (2017). Adsorption and Desorption Properties of Carbon Nanomaterials, the Potential for Water Treatments and Associated Risks. In: Lofrano, G., Libralato, G., Brown, J. (eds) Nanotechnologies for Environmental Remediation. Springer, Cham. https://doi.org/10.1007/978-3-319-53162-5_5

Download citation

Publish with us

Policies and ethics