Skip to main content

Herpes simplex virus Membrane Fusion

  • Chapter
  • First Online:
Cell Biology of Herpes Viruses

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 223))

Abstract

Herpes simplex virus mediates multiple distinct fusion events during infection. HSV entry is initiated by fusion of the viral envelope with either the limiting membrane of a host cell endocytic compartment or the plasma membrane. In the infected cell during viral assembly, immature, enveloped HSV particles in the perinuclear space fuse with the outer nuclear membrane in a process termed de-envelopment. A cell infected with some strains of HSV with defined mutations spread to neighboring cells by a fusion event called syncytium formation. Two experimental methods, the transient cell-cell fusion approach and fusion from without, are useful surrogate assays of HSV fusion. These five fusion processes are considered in terms of their requirements, mechanism, and regulation. The execution and modulation of these events require distinct yet often overlapping sets of viral proteins and host cell factors. The core machinery of HSV gB, gD, and the heterodimer gH/gL is required for most if not all of the HSV fusion mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arii J, Uema M, Morimoto T, Sagara H, Akashi H, Ono E, Arase H, Kawaguchi Y (2009) Entry of herpes simplex virus 1 and other alphaherpesviruses via the paired immunoglobulin-like type 2 receptor alpha. J Virol 83:4520–4527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arii J, Goto H, Suenaga T, Oyama M, Kozuka-Hata H, Imai T, Minowa A, Akashi H, Arase H, Kawaoka Y, Kawaguchi Y (2010) Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. Nature 467:859–862

    Article  CAS  PubMed  Google Scholar 

  • Arii J, Hirohata Y, Kato A, Kawaguchi Y (2015) Nonmuscle myosin heavy chain IIb mediates herpes simplex virus 1 entry. J Virol 89:1879–1888

    Article  PubMed  CAS  Google Scholar 

  • Atanasiu D, Whitbeck JC, Cairns TM, Reilly B, Cohen GH, Eisenberg RJ (2007) Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion. Proc Natl Acad Sci USA 104:18718–18723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atanasiu D, Saw WT, Cohen GH, Eisenberg RJ (2010a) Cascade of events governing cell-cell fusion induced by herpes simplex virus glycoproteins gD, gH/gL, and gB. J Virol 84:12292–12299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atanasiu D, Whitbeck JC, de Leon MP, Lou H, Hannah BP, Cohen GH, Eisenberg RJ (2010b) Bimolecular complementation defines functional regions of herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. J Virol 84:3825–3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atanasiu D, Cairns TM, Whitbeck JC, Saw WT, Rao S, Eisenberg RJ, Cohen GH (2013) Regulation of herpes simplex virus gB-induced cell-cell fusion by mutant forms of gH/gL in the absence of gD and cellular receptors. MBio 4(2):e00046–e00013

    Article  PubMed  PubMed Central  Google Scholar 

  • Avitabile E, Lombardi G, Campadelli-Fiume G (2003) Herpes simplex virus glycoprotein K, but not its syncytial allele, inhibits cell-cell fusion mediated by the four fusogenic glycoproteins, gD, gB, gH, and gL. J Virol 77:6836–6844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avitabile E, Lombardi G, Gianni T, Capri M, Campadelli-Fiume G (2004) Coexpression of UL20p and gK inhibits cell-cell fusion mediated by herpes simplex virus glycoproteins gD, gH-gL, and wild-type gB or an endocytosis-defective gB mutant and downmodulates their cell surface expression. J Virol 78:8015–8025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avitabile E, Forghieri C, Campadelli-Fiume G (2007) Complexes between herpes simplex virus glycoproteins gD, gB, and gH detected in cells by complementation of split enhanced green fluorescent protein. J Virol 81:11532–11537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avitabile E, Forghieri C, Campadelli-Fiume G (2009) Cross talk among the glycoproteins involved in herpes simplex virus entry and fusion: the interaction between gB and gH/gL does not necessarily require gD. J Virol 83:10752–10760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baines JD, Roizman B (1991) The open reading frames UL3, UL4, UL10, and UL16 are dispensable for the replication of herpes simplex virus 1 in cell culture. J Virol 65:938–944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baines JD, Ward PL, Campadelli-Fiume G, Roizman B (1991) The UL20 gene of herpes simplex virus 1 encodes a function necessary for viral egress. J Virol 65:6414–6424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balan P, Davis-Poynter N, Bell S, Atkinson H, Browne H, Minson T (1994) An analysis of the in vitro and in vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins gG, gE, gI or the putative gJ. J Gen Virol 75(Pt 6):1245–1258

    Article  CAS  PubMed  Google Scholar 

  • Barrow E, Nicola AV, Liu J (2013) Multiscale perspectives of virus entry via endocytosis. Virol J 10:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beitia Ortiz de Zarate I, Kaelin K, Rozenberg F (2004) Effects of mutations in the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B on intracellular transport and infectivity. J Virol 78:1540–1551

    Article  PubMed  CAS  Google Scholar 

  • Bender FC, Samanta M, Heldwein EE, de Leon MP, Bilman E, Lou H, Whitbeck JC, Eisenberg RJ, Cohen GH (2007) Antigenic and mutational analyses of herpes simplex virus glycoprotein B reveal four functional regions. J Virol 81:3827–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blissard GW, Wenz JR (1992) Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol 66:6829–6835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Browne HM, Bruun BC, Minson AC (1996) Characterization of herpes simplex virus type 1 recombinants with mutations in the cytoplasmic tail of glycoprotein H. J Gen Virol 77(Pt 10):2569–2573

    Article  CAS  PubMed  Google Scholar 

  • Browne H, Bruun B, Minson T (2001) Plasma membrane requirements for cell fusion induced by herpes simplex virus type 1 glycoproteins gB, gD, gH and gL. J Gen Virol 82:1419–1422

    Article  CAS  PubMed  Google Scholar 

  • Bzik DJ, Fox BA, DeLuca NA, Person S (1984) Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: mutations affecting rate of virus entry and cell fusion. Virology 137:185–190

    Article  CAS  PubMed  Google Scholar 

  • Cai WZ, Person S, Warner SC, Zhou JH, DeLuca NA (1987) Linker-insertion nonsense and restriction-site deletion mutations of the gB glycoprotein gene of herpes simplex virus type 1. J Virol 61:714–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai WH, Gu B, Person S (1988a) Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol 62:2596–2604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai WZ, Person S, DebRoy C, Gu BH (1988b) Functional regions and structural features of the gB glycoprotein of herpes simplex virus type 1. An analysis of linker insertion mutants. J Mol Biol 201:575–588

    Article  CAS  PubMed  Google Scholar 

  • Cairns TM, Whitbeck JC, Lou H, Heldwein EE, Chowdary TK, Eisenberg RJ, Cohen GH (2011) Capturing the herpes simplex virus core fusion complex (gB-gH/gL) in an acidic environment. J Virol 85:6175–6184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carfi A, Willis SH, Whitbeck JC, Krummenacher C, Cohen GH, Eisenberg RJ, Wiley DC (2001) Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell 8:169–179

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Koga J, Whitley RJ (1989) A role for herpes simplex virus type 1 glycoprotein E in induction of cell fusion. J Gen Virol 70(Pt 8):2157–2162

    Article  CAS  PubMed  Google Scholar 

  • Chowdary TK, Cairns TM, Atanasiu D, Cohen GH, Eisenberg RJ, Heldwein EE (2010) Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat Struct Mol Biol 17:882–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury S, Chouljenko VN, Naderi M, Kousoulas KG (2013) The amino terminus of herpes simplex virus 1 glycoprotein K is required for virion entry via the paired immunoglobulin-like type-2 receptor alpha. J Virol 87:3305–3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocchi F, Fusco D, Menotti L, Gianni T, Eisenberg RJ, Cohen GH, Campadelli-Fiume G (2004) The soluble ectodomain of herpes simplex virus gD contains a membrane-proximal pro-fusion domain and suffices to mediate virus entry. Proc Natl Acad Sci USA 101:7445–7450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen GH, Ponce de Leon M, Nichols C (1972) Isolation of a herpes simplex virus-specific antigenic fraction which stimulates the production of neutralizing antibody. J Virol 10:1021–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly SA, Longnecker R (2012) Residues within the C-terminal arm of the herpes simplex virus 1 glycoprotein B ectodomain contribute to its refolding during the fusion step of virus entry. J Virol 86:6386–6393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly SA, Landsburg DJ, Carfi A, Wiley DC, Eisenberg RJ, Cohen GH (2002) Structure-based analysis of the herpes simplex virus glycoprotein D binding site present on herpesvirus entry mediator HveA (HVEM). J Virol 76:10894–10904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly SA, Landsburg DJ, Carfi A, Wiley DC, Cohen GH, Eisenberg RJ (2003) Structure-based mutagenesis of herpes simplex virus glycoprotein D defines three critical regions at the gD-HveA/HVEM binding interface. J Virol 77:8127–8140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly SA, Landsburg DJ, Carfi A, Whitbeck JC, Zuo Y, Wiley DC, Cohen GH, Eisenberg RJ (2005) Potential nectin-1 binding site on herpes simplex virus glycoprotein D. J Virol 79:1282–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly SA, Leser GP, Jardetzky TS, Lamb RA (2009) Bimolecular complementation of paramyxovirus fusion and hemagglutinin-neuraminidase proteins enhances fusion: implications for the mechanism of fusion triggering. J Virol 83:10857–10868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crump CM, Bruun B, Bell S, Pomeranz LE, Minson T, Browne HM (2004) Alphaherpesvirus glycoprotein M causes the relocalization of plasma membrane proteins. J Gen Virol 85:3517–3527

    Article  CAS  PubMed  Google Scholar 

  • David AT, Saied A, Charles A, Subramanian R, Chouljenko VN, Kousoulas KG (2012) A herpes simplex virus 1 (McKrae) mutant lacking the glycoprotein K gene is unable to infect via neuronal axons and egress from neuronal cell bodies. MBio 3:e00144-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis-Poynter N, Bell S, Minson T, Browne H (1994) Analysis of the contributions of herpes simplex virus type 1 membrane proteins to the induction of cell-cell fusion. J Virol 68:7586–7590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Debroy C, Pederson N, Person S (1985) Nucleotide sequence of a herpes simplex virus type 1 gene that causes cell fusion. Virology 145:36–48

    Article  CAS  PubMed  Google Scholar 

  • Delboy MG, Patterson JL, Hollander AM, Nicola AV (2006) Nectin-2-mediated entry of a syncytial strain of herpes simplex virus via pH-independent fusion with the plasma membrane of Chinese hamster ovary cells. Virol J 3:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delboy MG, Roller DG, Nicola AV (2008) Cellular proteasome activity facilitates herpes simplex virus entry at a postpenetration step. J Virol 82:3381–3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLuca N, Bzik DJ, Bond VC, Person S, Snipes W (1982) Nucleotide sequences of herpes simplex virus type 1 (HSV-1) affecting virus entry, cell fusion, and production of glycoprotein gb (VP7). Virology 122:411–423

    Article  CAS  PubMed  Google Scholar 

  • Di Giovine P, Settembre EC, Bhargava AK, Luftig MA, Lou H, Cohen GH, Eisenberg RJ, Krummenacher C, Carfi A (2011) Structure of herpes simplex virus glycoprotein D bound to the human receptor nectin-1. PLoS Pathog 7:e1002277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dingwell KS, Brunetti CR, Hendricks RL, Tang Q, Tang M, Rainbow AJ, Johnson DC (1994) Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol 68:834–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dollery SJ, Delboy MG, Nicola AV (2010a) Low pH-induced conformational change in herpes simplex virus glycoprotein B. J Virol 84:3759–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dollery SJ, Lane KD, Delboy MG, Roller DG, Nicola AV (2010b) Role of the UL45 protein in herpes simplex virus entry via low pH-dependent endocytosis and its relationship to the conformation and function of glycoprotein B. Virus Res 149:115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dollery SJ, Wright CC, Johnson DC, Nicola AV (2011) Low-pH-dependent changes in the conformation and oligomeric state of the prefusion form of herpes simplex virus glycoprotein B are separable from fusion activity. J Virol 85:9964–9973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolter KE, Ramaswamy R, Holland TC (1994) Syncytial mutations in the herpes simplex virus type 1 gK (UL53) gene occur in two distinct domains. J Virol 68:8277–8281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C, Cohen GH (2012) Herpes virus fusion and entry: a story with many characters. Virus 4:800–832

    Article  CAS  Google Scholar 

  • El Kasmi I, Lippe R (2015) Herpes simplex virus 1 gN partners with gM to modulate the viral fusion machinery. J Virol 89:2313–2323

    Article  PubMed  CAS  Google Scholar 

  • Engel JP, Boyer EP, Goodman JL (1993) Two novel single amino acid syncytial mutations in the carboxy terminus of glycoprotein B of herpes simplex virus type 1 confer a unique pathogenic phenotype. Virology 192:112–120

    Article  CAS  PubMed  Google Scholar 

  • Falke D, Knoblich A, Muller S (1985) Fusion from without induced by herpes simplex virus type 1. Intervirology 24:211–219

    Article  CAS  PubMed  Google Scholar 

  • Farnsworth A, Wisner TW, Webb M, Roller R, Cohen G, Eisenberg R, Johnson DC (2007) Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane. Proc Natl Acad Sci USA 104:10187–10192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florkiewicz RZ, Rose JK (1984) A cell line expressing vesicular stomatitis virus glycoprotein fuses at low pH. Science 225:721–723

    Article  CAS  PubMed  Google Scholar 

  • Forrester A, Farrell H, Wilkinson G, Kaye J, Davis-Poynter N, Minson T (1992) Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. J Virol 66:341–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster TP, Melancon JM, Baines JD, Kousoulas KG (2004) The herpes simplex virus type 1 UL20 protein modulates membrane fusion events during cytoplasmic virion morphogenesis and virus-induced cell fusion. J Virol 78:5347–5357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frampton AR Jr, Stolz DB, Uchida H, Goins WF, Cohen JB, Glorioso JC (2007) Equine herpesvirus 1 enters cells by two different pathways, and infection requires the activation of the cellular kinase ROCK1. J Virol 81:10879–10889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs W, Klupp BG, Granzow H, Osterrieder N, Mettenleiter TC (2002) The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 76:364–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller AO, Spear PG (1987) Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus 1 prevent virion-cell fusion at the cell surface. Proc Natl Acad Sci USA 84:5454–5458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage PJ, Levine M, Glorioso JC (1993) Syncytium-inducing mutations localize to two discrete regions within the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B. J Virol 67:2191–2201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galdiero M, Whiteley A, Bruun B, Bell S, Minson T, Browne H (1997) Site-directed and linker insertion mutagenesis of herpes simplex virus type 1 glycoprotein H. J Virol 71:2163–2170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher JR, Saw WT, Atanasiu D, Lou H, Eisenberg RJ, Cohen GH (2013) Displacement of the C terminus of herpes simplex virus gD is sufficient to expose the fusion-activating interfaces on gD. J Virol 87:12656–12666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG (1998) Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280:1618–1620

    Article  CAS  PubMed  Google Scholar 

  • Gianni T, Campadelli-Fiume G, Menotti L (2004) Entry of herpes simplex virus mediated by chimeric forms of nectin1 retargeted to endosomes or to lipid rafts occurs through acidic endosomes. J Virol 78:12268–12276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianni T, Salvioli S, Chesnokova LS, Hutt-Fletcher LM, Campadelli-Fiume G (2013) αvβ6- and αvβ8-integrins serve as interchangeable receptors for HSV gH/gL to promote endocytosis and activation of membrane fusion. PLoS Pathog 9:e1003806

    Google Scholar 

  • Gianni T, Massaro R, Campadelli-Fiume G (2015) Dissociation of HSV gL from gH by alphavbeta6- or alphavbeta8-integrin promotes gH activation and virus entry. Proc Natl Acad Sci USA 112:E3901–E3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gompels U, Minson A (1986) The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology 153:230–247

    Article  CAS  PubMed  Google Scholar 

  • Haanes EJ, Nelson CM, Soule CL, Goodman JL (1994) The UL45 gene product is required for herpes simplex virus type 1 glycoprotein B-induced fusion. J Virol 68:5825–5834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Chadha P, Starkey JL, Wills JW (2012) Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail. Proc Natl Acad Sci USA 109:19798–19803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannah BP, Heldwein EE, Bender FC, Cohen GH, Eisenberg RJ (2007) Mutational evidence of internal fusion loops in herpes simplex virus glycoprotein B. J Virol 81:4858–4865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman A, Browne H, Minson T (2002) The transmembrane domain and cytoplasmic tail of herpes simplex virus type 1 glycoprotein H play a role in membrane fusion. J Virol 76:10708–10716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heine JW, Honess RW, Cassai E, Roizman B (1974) Proteins specified by herpes simplex virus. XII. The virion polypeptides of type 1 strains. J Virol 14:640–651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC (2006) Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313:217–220

    Article  CAS  PubMed  Google Scholar 

  • Highlander SL, Sutherland SL, Gage PJ, Johnson DC, Levine M, Glorioso JC (1987) Neutralizing monoclonal antibodies specific for herpes simplex virus glycoprotein D inhibit virus penetration. J Virol 61:3356–3364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Highlander SL, Cai WH, Person S, Levine M, Glorioso JC (1988) Monoclonal antibodies define a domain on herpes simplex virus glycoprotein B involved in virus penetration. J Virol 62:1881–1888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirohata Y, Arii J, Liu Z, Shindo K, Oyama M, Kozuka-Hata H, Sagara H, Kato A, Kawaguchi Y (2015) Herpes simplex virus 1 recruits CD98 heavy chain and beta1 integrin to the nuclear membrane for viral de-envelopment. J Virol 89:7799–7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson L, Browne H, Wargent V, Davis-Poynter N, Primorac S, Goldsmith K, Minson AC, Johnson DC (1992) A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 66:2240–2250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson L, Johnson DC (1995) Herpes simplex virus glycoprotein K promotes egress of virus particles. J Virol 69:5401–5413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JO, Lin E, Spear PG, Longnecker R (2010) Insertion mutations in herpes simplex virus 1 glycoprotein H reduce cell surface expression, slow the rate of cell fusion, or abrogate functions in cell fusion and viral entry. J Virol 84:2038–2046

    Article  CAS  PubMed  Google Scholar 

  • Jacobson JG, Martin SL, Coen DM (1989) A conserved open reading frame that overlaps the herpes simplex virus thymidine kinase gene is important for viral growth in cell culture. J Virol 63:1839–1843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DC, Baines JD (2011) Herpesviruses remodel host membranes for virus egress. Nat Rev Microbiol 9:382–394

    Article  CAS  PubMed  Google Scholar 

  • Johnson DC, Wisner TW, Wright CC (2011) Herpes simplex virus glycoproteins gB and gD function in a redundant fashion to promote secondary envelopment. J Virol 85:4910–4926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones NA, Geraghty RJ (2004) Fusion activity of lipid-anchored envelope glycoproteins of herpes simplex virus type 1. Virology 324:213–228

    Article  CAS  PubMed  Google Scholar 

  • Klupp BG, Nixdorf R, Mettenleiter TC (2000) Pseudorabies virus glycoprotein M inhibits membrane fusion. J Virol 74:6760–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klupp B, Altenschmidt J, Granzow H, Fuchs W, Mettenleiter TC (2008) Glycoproteins required for entry are not necessary for egress of pseudorabies virus. J Virol 82:6299–6309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komala Sari T, Pritchard SM, Cunha CW, Wudiri GA, Laws EI, Aguilar HC, Taus NS, Nicola AV (2013) Contributions of herpes simplex virus type 1 envelope proteins to entry by endocytosis. J Virol 87:13922–13926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koyano S, Mar EC, Stamey FR, Inoue N (2003) Glycoproteins M and N of human herpesvirus 8 form a complex and inhibit cell fusion. J Gen Virol 84:1485–1491

    Article  CAS  PubMed  Google Scholar 

  • Krummenacher C, Nicola AV, Whitbeck JC, Lou H, Hou W, Lambris JD, Geraghty RJ, Spear PG, Cohen GH, Eisenberg RJ (1998) Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry. J Virol 72:7064–7074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krummenacher C, Supekar VM, Whitbeck JC, Lazear E, Connolly SA, Eisenberg RJ, Cohen GH, Wiley DC, Carfi A (2005) Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. EMBO J 24:4144–4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laquerre S, Argnani R, Anderson DB, Zucchini S, Manservigi R, Glorioso JC (1998) Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol 72:6119–6130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazear E, Carfi A, Whitbeck JC, Cairns TM, Krummenacher C, Cohen GH, Eisenberg RJ (2008) Engineered disulfide bonds in herpes simplex virus type 1 gD separate receptor binding from fusion initiation and viral entry. J Virol 82:700–709

    Article  CAS  PubMed  Google Scholar 

  • Ligas MW, Johnson DC (1988) A herpes simplex virus mutant in which glycoprotein D sequences are replaced by beta-galactosidase sequences binds to but is unable to penetrate into cells. J Virol 62:1486–1494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin E, Spear PG (2007) Random linker-insertion mutagenesis to identify functional domains of herpes simplex virus type 1 glycoprotein B. Proc Natl Acad Sci USA 104:13140–13145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Kato A, Shindo K, Noda T, Sagara H, Kawaoka Y, Arii J, Kawaguchi Y (2014) Herpes simplex virus 1 UL47 interacts with viral nuclear egress factors UL31, UL34, and Us3 and regulates viral nuclear egress. J Virol 88:4657–4667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Longnecker R, Roizman B (1987) Clustering of genes dispensable for growth in culture in the S component of the HSV-1 genome. Science 236:573–576

    Article  CAS  PubMed  Google Scholar 

  • Longnecker R, Chatterjee S, Whitley RJ, Roizman B (1987) Identification of a herpes simplex virus 1 glycoprotein gene within a gene cluster dispensable for growth in cell culture. Proc Natl Acad Sci USA 84:4303–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loret S, Guay G, Lippe R (2008) Comprehensive characterization of extracellular herpes simplex virus type 1 virions. J Virol 82:8605–8618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lycke E, Hamark B, Johansson M, Krotochwil A, Lycke J, Svennerholm B (1988) Herpes simplex virus infection of the human sensory neuron. An electron microscopy study. Arch Virol 101:87–104

    Article  CAS  PubMed  Google Scholar 

  • Manoj S, Jogger CR, Myscofski D, Yoon M, Spear PG (2004) Mutations in herpes simplex virus glycoprotein D that prevent cell entry via nectins and alter cell tropism. Proc Natl Acad Sci USA 101:12414–12421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller N, Hutt-Fletcher LM (1992) Epstein-Barr virus enters B cells and epithelial cells by different routes. J Virol 66:3409–3414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milne RS, Nicola AV, Whitbeck JC, Eisenberg RJ, Cohen GH (2005) Glycoprotein D receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1. J Virol 79:6655–6663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minson AC, Hodgman TC, Digard P, Hancock DC, Bell SE, Buckmaster EA (1986) An analysis of the biological properties of monoclonal antibodies against glycoprotein D of herpes simplex virus and identification of amino acid substitutions that confer resistance to neutralization. J Gen Virol 67:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Montgomery RI, Warner MS, Lum BJ, Spear PG (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87:427–436

    Article  CAS  PubMed  Google Scholar 

  • Mossman KL, Sherburne R, Lavery C, Duncan J, Smiley JR (2000) Evidence that herpes simplex virus VP16 is required for viral egress downstream of the initial envelopment event. J Virol 74:6287–6299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muggeridge MI (2000) Characterization of cell-cell fusion mediated by herpes simplex virus 2 glycoproteins gB, gD, gH and gL in transfected cells. J Gen Virol 81:2017–2027

    Article  CAS  PubMed  Google Scholar 

  • Navarro D, Paz P, Pereira L (1992) Domains of herpes simplex virus I glycoprotein B that function in virus penetration, cell-to-cell spread, and cell fusion. Virology 186:99–112

    Article  CAS  PubMed  Google Scholar 

  • Neidhardt H, Schroder CH, Kaerner HC (1987) Herpes simplex virus type 1 glycoprotein E is not indispensable for viral infectivity. J Virol 61:600–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicola AV (2016) Herpesvirus entry into host cells mediated by endosomal low pH. Traffic 17:965–975

    Article  CAS  PubMed  Google Scholar 

  • Nicola AV, Straus SE (2004) Cellular and viral requirements for rapid endocytic entry of herpes simplex virus. J Virol 78:7508–7517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicola AV, Ponce de Leon M, Xu R, Hou W, Whitbeck JC, Krummenacher C, Montgomery RI, Spear PG, Eisenberg RJ, Cohen GH (1998) Monoclonal antibodies to distinct sites on herpes simplex virus (HSV) glycoprotein D block HSV binding to HVEM. J Virol 72:3595–3601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicola AV, McEvoy AM, Straus SE (2003) Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 77:5324–5332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicola AV, Hou J, Major EO, Straus SE (2005) Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway. J Virol 79:7609–7616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble AG, Lee GT, Sprague R, Parish ML, Spear PG (1983) Anti-gD monoclonal antibodies inhibit cell fusion induced by herpes simplex virus type 1. Virology 129:218–224

    Article  CAS  PubMed  Google Scholar 

  • Novotny MJ, Parish ML, Spear PG (1996) Variability of herpes simplex virus 1 gL and anti-gL antibodies that inhibit cell fusion but not viral infectivity. Virology 221:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nozawa N, Kawaguchi Y, Tanaka M, Kato A, Kato A, Kimura H, Nishiyama Y (2005) Herpes simplex virus type 1 UL51 protein is involved in maturation and egress of virus particles. J Virol 79:6947–6956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padula ME, Sydnor ML, Wilson DW (2009) Isolation and preliminary characterization of herpes simplex virus 1 primary enveloped virions from the perinuclear space. J Virol 83:4757–4765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry C, Bell S, Minson T, Browne H (2005) Herpes simplex virus type 1 glycoprotein H binds to alphavbeta3 integrins. J Gen Virol 86:7–10

    Article  CAS  PubMed  Google Scholar 

  • Peng T, Ponce-de-Leon M, Jiang H, Dubin G, Lubinski JM, Eisenberg RJ, Cohen GH (1998) The gH-gL complex of herpes simplex virus (HSV) stimulates neutralizing antibody and protects mice against HSV type 1 challenge. J Virol 72:65–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pertel PE, Fridberg A, Parish ML, Spear PG (2001) Cell fusion induced by herpes simplex virus glycoproteins gB, gD, and gH-gL requires a gD receptor but not necessarily heparan sulfate. Virology 279:313–324

    Article  CAS  PubMed  Google Scholar 

  • Polcicova K, Biswas PS, Banerjee K, Wisner TW, Rouse BT, Johnson DC (2005) Herpes keratitis in the absence of anterograde transport of virus from sensory ganglia to the cornea. Proc Natl Acad Sci USA 102:11462–11467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghu H, Sharma-Walia N, Veettil MV, Sadagopan S, Chandran B (2009) Kaposi’s sarcoma-associated herpesvirus utilizes an actin polymerization-dependent macropinocytic pathway to enter human dermal microvascular endothelial and human umbilical vein endothelial cells. J Virol 83:4895–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds AE, Wills EG, Roller RJ, Ryckman BJ, Baines JD (2002) Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 76:8939–8952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogalin HB, Heldwein EE (2015) Interplay between the herpes simplex virus 1 gB cytodomain and the gH cytotail during cell-cell fusion. J Virol 89:12262–12272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roizman B (1962) Polykaryocytosis. Cold Spring Harb Symp Quant Biol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Roller DG, Dollery SJ, Doyle JL, Nicola AV (2008) Structure-function analysis of herpes simplex virus glycoprotein B with fusion-from-without activity. Virology 382:207–216

    Article  CAS  PubMed  Google Scholar 

  • Roop C, Hutchinson L, Johnson DC (1993) A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. J Virol 67:2285–2297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruel N, Zago A, Spear PG (2006) Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry. Virology 346:229–237

    Article  CAS  PubMed  Google Scholar 

  • Ruyechan WT, Morse LS, Knipe DM, Roizman B (1979) Molecular genetics of herpes simplex virus. II. Mapping of the major viral glycoproteins and of the genetic loci specifying the social behavior of infected cells. J Virol 29:677–697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saharkhiz-Langroodi A, Holland TC (1997) Identification of the fusion-from-without determinants of herpes simplex virus type 1 glycoprotein B. Virology 227:153–159

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Pescador L, Pereira L, Charlebois ED, Kohl S (1993) Antibodies to epitopes of herpes simplex virus type 1 glycoprotein B (gB) in human sera: analysis of functional gB epitopes defined by inhibition of murine monoclonal antibodies. J Infect Dis 168:844–853

    Article  CAS  PubMed  Google Scholar 

  • Sanders PG, Wilkie NM, Davison AJ (1982) Thymidine kinase deletion mutants of herpes simplex virus type 1. J Gen Virol 63:277–295

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Arii J, Suenaga T, Wang J, Kogure A, Uehori J, Arase N, Shiratori I, Tanaka S, Kawaguchi Y, Spear PG, Lanier LL, Arase H (2008) PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B. Cell 132:935–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shieh MT, Spear PG (1994) Herpesvirus-induced cell fusion that is dependent on cell surface heparan sulfate or soluble heparin. J Virol 68:1224–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla D, Spear PG (2001) Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest 108:503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22

    Article  CAS  PubMed  Google Scholar 

  • Siekavizza-Robles CR, Dollery SJ, Nicola AV (2010) Reversible conformational change in herpes simplex virus glycoprotein B with fusion-from-without activity is triggered by mildly acidic pH. Virol J 7:352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spear PG, Manoj S, Yoon M, Jogger CR, Zago A, Myscofski D (2006) Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry. Virology 344:17–24

    Article  CAS  PubMed  Google Scholar 

  • Striebinger H, Funk C, Raschbichler V, Bailer SM (2016) Subcellular trafficking and functional relationship of the HSV-1 glycoproteins N and M. Virus 8:83

    Article  CAS  Google Scholar 

  • Suenaga T, Satoh T, Somboonthum P, Kawaguchi Y, Mori Y, Arase H (2010) Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proc Natl Acad Sci USA 107:866–871

    Article  CAS  PubMed  Google Scholar 

  • Terry-Allison T, Montgomery RI, Whitbeck JC, Xu R, Cohen GH, Eisenberg RJ, Spear PG (1998) HveA (herpesvirus entry mediator A), a coreceptor for herpes simplex virus entry, also participates in virus-induced cell fusion. J Virol 72:5802–5810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terry-Allison T, Montgomery RI, Warner MS, Geraghty RJ, Spear PG (2001) Contributions of gD receptors and glycosaminoglycan sulfation to cell fusion mediated by herpes simplex virus 1. Virus Res 74:39–45

    Article  CAS  PubMed  Google Scholar 

  • Tognon M, Guandalini R, Romanelli MG, Manservigi R, Trevisani B (1991) Phenotypic and genotypic characterization of locus syn 5 in herpes simplex virus 1. Virus Res 18:135–150

    Article  CAS  PubMed  Google Scholar 

  • Turner A, Bruun B, Minson T, Browne H (1998) Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol 72:873–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Walle GR, Peters ST, Vander Ven BC, O’Callaghan DJ, Osterrieder N (2008) Equine herpesvirus 1 entry via endocytosis is facilitated by alphaV integrins and an RSD motif in glycoprotein D. J Virol 82:11859–11868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Visalli RJ, Brandt CR (1991) The HSV-1 UL45 gene is not required for growth in Vero cells. Virology 185:419–423

    Article  CAS  PubMed  Google Scholar 

  • Warner MS, Geraghty RJ, Martinez WM, Montgomery RI, Whitbeck JC, Xu R, Eisenberg RJ, Cohen GH, Spear PG (1998) A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 246:179–189

    Article  CAS  PubMed  Google Scholar 

  • Weber PC, Levine M, Glorioso JC (1987) Rapid identification of nonessential genes of herpes simplex virus type 1 by Tn5 mutagenesis. Science 236:576–579

    Article  CAS  PubMed  Google Scholar 

  • Weed DJ, Pritchard SM, Gonzalez F, Aguilar HC, Nicola AV (2017) Mildly acidic pH triggers an irreversible conformational change in the fusion domain of herpes simplex virus 1 glycoprotein B and inactivation of viral entry. J Virol 91 doi:10.1128/JVI.02123-16

    Google Scholar 

  • Weissenhorn W, Hinz A, Gaudin Y (2007) Virus membrane fusion. FEBS Lett 581:2150–2155

    Article  CAS  PubMed  Google Scholar 

  • Wilson DW, Davis-Poynter N, Minson AC (1994) Mutations in the cytoplasmic tail of herpes simplex virus glycoprotein H suppress cell fusion by a syncytial strain. J Virol 68:6985–6993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wisner TW, Wright CC, Kato A, Kawaguchi Y, Mou F, Baines JD, Roller RJ, Johnson DC (2009) Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase. J Virol 83:3115–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wudiri GA, Pritchard SM, Li H, Liu J, Aguilar HC, Gilk SD, Nicola AV (2014) Molecular requirement for sterols in herpes simplex virus entry and infectivity. J Virol 88:13918–13922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon M, Spear PG (2004) Random mutagenesis of the gene encoding a viral ligand for multiple cell entry receptors to obtain viral mutants altered for receptor usage. Proc Natl Acad Sci USA 101:17252–17257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon M, Zago A, Shukla D, Spear PG (2003) Mutations in the N termini of herpes simplex virus type 1 and 2 gDs alter functional interactions with the entry/fusion receptors HVEM, nectin-2, and 3-O-sulfated heparan sulfate but not with nectin-1. J Virol 77:9221–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zezulak KM, Spear PG (1984) Mapping of the structural gene for the herpes simplex virus type 2 counterpart of herpes simplex virus type 1 glycoprotein C and identification of a type 2 mutant which does not express this glycoprotein. J Virol 49:741–747

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony V. Nicola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Weed, D.J., Nicola, A.V. (2017). Herpes simplex virus Membrane Fusion. In: Osterrieder, K. (eds) Cell Biology of Herpes Viruses. Advances in Anatomy, Embryology and Cell Biology, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-53168-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53168-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53167-0

  • Online ISBN: 978-3-319-53168-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics