Skip to main content

Interindividual Spread of Herpesviruses

  • Chapter
  • First Online:
Cell Biology of Herpes Viruses

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 223))

Abstract

Interindividual spread of herpesviruses is essential for the virus life cycle and maintenance in host populations. For most herpesviruses, the virus-host relationship is close, having coevolved over millions of years resulting in comparatively high species specificity. The mechanisms governing interindividual spread or horizontal transmission are very complex, involving conserved herpesviral and cellular proteins during the attachment, entry, replication, and egress processes of infection. Also likely, specific herpesviruses have evolved unique viral and cellular interactions during cospeciation that are dependent on their relationship. Multiple steps are required for interindividual spread including virus assembly in infected cells; release into the environment, followed by virus attachment; and entry into new hosts. Should any of these steps be compromised, transmission is rendered impossible. This review will focus mainly on the natural virus-host model of Marek’s disease virus (MDV) in chickens in order to delineate important steps during interindividual spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelgawad A, Azab W, Damiani AM, Baumgartner K, Will H, Osterrieder N, Greenwood AD (2014) Zebra-borne equine herpesvirus type 1 (EHV-1) infection in non-African captive mammals. Vet Microbiol 169:102–106

    Article  PubMed  Google Scholar 

  • Advani SJ, Brandimarti R, Weichselbaum RR, Roizman B (2000) The disappearance of cyclins A and B and the increase in activity of the G(2)/M-phase cellular kinase cdc2 in herpes simplex virus 1-infected cells require expression of the alpha22/U(S)1.5 and U(L)13 viral genes. J Virol 74:8–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen GP, Coogle LD (1988) Characterization of an equine herpesvirus type 1 gene encoding a glycoprotein (gp13) with homology to herpes simplex virus glycoprotein C. J Virol 62:2850–2858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari A, Emery VC (1999) The U69 gene of human herpesvirus 6 encodes a protein kinase which can confer ganciclovir sensitivity to baculoviruses. J Virol 73:3284–3291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antin PB, Ordahl CP (1991) Isolation and characterization of an avian myogenic cell line. Dev Biol 143:111–121

    Article  CAS  PubMed  Google Scholar 

  • Asai R, Kato A, Kato K, Kanamori-Koyama M, Sugimoto K, Sairenji T, Nishiyama Y, Kawaguchi Y (2006) Epstein-Barr virus protein kinase BGLF4 is a virion tegument protein that dissociates from virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1. J Virol 80:5125–5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baaten BJ, Staines KA, Smith LP, Skinner H, Davison TF, Butter C (2009) Early replication in pulmonary B cells after infection with Marek’s disease herpesvirus by the respiratory route. Viral Immunol 22:431–444

    Article  CAS  PubMed  Google Scholar 

  • Beasley JN, Patterson LT, Mcwade DH (1970) Transmission of Marek’s disease by poultry house dust and chicken dander. Am J Vet Res 31:339–344

    CAS  PubMed  Google Scholar 

  • Blaskovic D, Stancekova M, Svobodova J, Mistrikova J (1980) Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol 24:468

    CAS  PubMed  Google Scholar 

  • Blondeau C, Chbab N, Beaumont C, Courvoisier K, Osterrieder N, Vautherot JF, Denesvre C (2007) A full UL13 open reading frame in Marek’s disease virus (MDV) is dispensable for tumor formation and feather follicle tropism and cannot restore horizontal virus transmission of rRB-1B in vivo. Vet Res 38:419–433

    Article  CAS  PubMed  Google Scholar 

  • Blue CE, Spiller OB, Blackbourn DJ (2004) The relevance of complement to virus biology. Virology 319:176–184

    Article  CAS  PubMed  Google Scholar 

  • Bouhlal H, Chomont N, Requena M, Nasreddine N, Saidi H, Legoff J, Kazatchkine MD, Belec L, Hocini H (2007) Opsonization of HIV with complement enhances infection of dendritic cells and viral transfer to CD4 T cells in a CR3 and DC-SIGN-dependent manner. J Immunol 178:1086–1095

    Article  CAS  PubMed  Google Scholar 

  • Bulow VV, Biggs PM (1975) Differentiation between strains of Marek’s disease virus and Turkey herpesvirus by immunofluorescence assays. Avian Pathol 4:133–146

    Article  CAS  PubMed  Google Scholar 

  • Calnek BW, Schat KA, Heller ED, Buscaglia C (1985) In vitro infection of T-lymphoblasts with Marek’s disease virus. In: Calnek BW, Spencer JL (eds) International symposium on Marek’s Disease, 1984 Cornell University, Ithaca, NY. American Association of Avian Pathologists, Kennett Square, PA, pp 173–187

    Google Scholar 

  • Carrozza JH, Fredrickson TN, Prince RP, Luginbuhl RE (1973) Role of desquamated epithelial cells in transmission of Marek’s disease. Avian Dis 17:767–781

    Article  CAS  PubMed  Google Scholar 

  • Chen MR, Chang SJ, Huang H, Chen JY (2000) A protein kinase activity associated with Epstein-Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. J Virol 74:3093–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu L, Holt SC (1994) Purification and characterization of a 45 kDa hemolysin from Treponema denticola ATCC 35404. Microb Pathog 16:197–212

    Article  CAS  PubMed  Google Scholar 

  • Churchill AE, Biggs PM (1967) Agent of Marek’s disease in tissue culture. Nature 215:528–530

    Article  CAS  PubMed  Google Scholar 

  • Churchill AE, Chubb RC, Baxendale W (1969) The attenuation, with loss of oncogenicity, of the herpes-type virus of Marek’s disease (strain HPRS-16) on passage in cell culture. J Gen Virol 4:557–564

    Article  CAS  PubMed  Google Scholar 

  • Coulter LJ, Moss HW, Lang J, Mcgeoch DJ (1993) A mutant of herpes simplex virus type 1 in which the UL13 protein kinase gene is disrupted. J Gen Virol 74(Pt 3):387–395

    Article  CAS  PubMed  Google Scholar 

  • Davison AJ, Eberle R, Ehlers B, Hayward GS, Mcgeoch DJ, Minson AC, Pellett PE, Roizman B, Studdert MJ, Thiry E (2009) The order Herpesvirales. Arch Virol 154:171–177

    Article  CAS  PubMed  Google Scholar 

  • De Wind N, Domen J, Berns A (1992) Herpesviruses encode an unusual protein-serine/threonine kinase which is nonessential for growth in cultured cells. J Virol 66:5200–5209

    PubMed  PubMed Central  Google Scholar 

  • Denesvre C, Remy S, Trapp-Fragnet L, Smith LP, Georgeault S, Vautherot JF, Nair V (2016) Marek’s disease virus undergoes complete morphogenesis after reactivation in a T-lymphoblastoid cell line transformed by recombinant fluorescent marker virus. J Gen Virol 97:480–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorange F, El Mehdaoui S, Pichon C, Coursaget P, Vautherot JF (2000) Marek’s disease virus (MDV) homologues of herpes simplex virus type 1 UL49 (VP22) and UL48 (VP16) genes: high-level expression and characterization of MDV-1 VP22 and VP16. J Gen Virol 81:2219–2230

    Article  CAS  PubMed  Google Scholar 

  • Dorange F, Tischer BK, Vautherot JF, Osterrieder N (2002) Characterization of Marek’s disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes: MDV-1 UL49, encoding VP22, is indispensable for virus growth. J Virol 76:1959–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorig RE, Marcil A, Chopra A, Richardson CD (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305

    Article  CAS  PubMed  Google Scholar 

  • Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–50

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg RJ, Ponce de Leon M, Friedman HM, Fries LF, Frank MM, Hastings JC, Cohen GH (1987) Complement component C3b binds directly to purified glycoprotein C of herpes simplex virus types 1 and 2. Microb Pathog 3:423–435

    Article  CAS  PubMed  Google Scholar 

  • Evans DJ, Almond JW (1998) Cell receptors for picornaviruses as determinants of cell tropism and pathogenesis. Trends Microbiol 6:198–202

    Article  CAS  PubMed  Google Scholar 

  • Friedman HM, Cohen GH, Eisenberg RJ, Seidel CA, Cines DB (1984) Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature 309:633–635

    Article  CAS  PubMed  Google Scholar 

  • Friedman HM, Wang L, Fishman NO, Lambris JD, Eisenberg RJ, Cohen GH, Lubinski J (1996) Immune evasion properties of herpes simplex virus type 1 glycoprotein gC. J Virol 70:4253–4260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman HM, Wang L, Pangburn MK, Lambris JD, Lubinski J (2000) Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1. J Immunol 165:4528–4536

    Article  CAS  PubMed  Google Scholar 

  • Fries LF, Friedman HM, Cohen GH, Eisenberg RJ, Hammer CH, Frank MM (1986) Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. J Immunol 137:1636–1641

    CAS  PubMed  Google Scholar 

  • Geiss BJ, Tavis JE, Metzger LM, Leib DA, Morrison LA (2001) Temporal regulation of herpes simplex virus type 2 VP22 expression and phosphorylation. J Virol 75:10721–10729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershburg E, Pagano JS (2002) Phosphorylation of the Epstein-Barr virus (EBV) DNA polymerase processivity factor EA-D by the EBV-encoded protein kinase and effects of the L-riboside benzimidazole 1263W94. J Virol 76:998–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershburg E, Pagano JS (2008) Conserved herpesvirus protein kinases. Biochim Biophys Acta 1784:203–212

    Article  CAS  PubMed  Google Scholar 

  • Gershburg E, Raffa S, Torrisi MR, Pagano JS (2007) Epstein-Barr virus-encoded protein kinase (BGLF4) is involved in production of infectious virus. J Virol 81:5407–5412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood AD, Tsangaras K, Ho SY, Szentiks CA, Nikolin VM, Ma G, Damiani A, East ML, Lawrenz A, Hofer H, Osterrieder N (2012) A potentially fatal mix of herpes in zoos. Curr Biol 22:1727–1731

    Article  CAS  PubMed  Google Scholar 

  • Halaby DM, Mornon JP (1998) The immunoglobulin superfamily: an insight on its tissular, species, and functional diversity. J Mol Evol 46:389–400

    Article  CAS  PubMed  Google Scholar 

  • Hamirally S, Kamil JP, Ndassa-Colday YM, Lin AJ, Jahng WJ, Baek MC, Noton S, Silva LA, Simpson-Holley M, Knipe DM, Golan DE, Marto JA, Coen DM (2009) Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog 5:e1000275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamza MS, Reyes RA, Izumiya Y, Wisdom R, Kung HJ, Luciw PA (2004) ORF36 protein kinase of Kaposi’s sarcoma herpesvirus activates the c-Jun N-terminal kinase signaling pathway. J Biol Chem 279:38325–38330

    Article  CAS  PubMed  Google Scholar 

  • Harris SL, Frank I, Yee A, Cohen GH, Eisenberg RJ, Friedman HM (1990) Glycoprotein C of herpes simplex virus type 1 prevents complement-mediated cell lysis and virus neutralization. J Infect Dis 162:331–337

    Article  CAS  PubMed  Google Scholar 

  • He Z, He YS, Kim Y, Chu L, Ohmstede C, Biron KK, Coen DM (1997) The human cytomegalovirus UL97 protein is a protein kinase that autophosphorylates on serines and threonines. J Virol 71:405–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heineman TC, Cohen JI (1995) The varicella-zoster virus (VZV) open reading frame 47 (ORF47) protein kinase is dispensable for viral replication and is not required for phosphorylation of ORF63 protein, the VZV homolog of herpes simplex virus ICP22. J Virol 69:7367–7370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Himly M, Foster DN, Bottoli I, Iacovoni JS, Vogt PK (1998) The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 248:295–304

    Article  CAS  PubMed  Google Scholar 

  • Houle JJ, Hoffmann EM, Esser AF (1988) Restriction of cell lysis by homologous complement: II. Protection of erythrocytes against lysis by newly activated complement. Blood 71:287–292

    CAS  PubMed  Google Scholar 

  • Huemer HP, Larcher C, Coe NE (1992) Pseudorabies virus glycoprotein III derived from virions and infected cells binds to the third component of complement. Virus Res 23:271–280

    Article  CAS  PubMed  Google Scholar 

  • Huemer HP, Larcher C, van Drunen Littel-van den Hurk S, Babiuk LA (1993) Species selective interaction of Alphaherpesvirinae with the “unspecific” immune system of the host. Arch Virol 130:353–364

    Article  CAS  PubMed  Google Scholar 

  • Huemer HP, Nowotny N, Crabb BS, Meyer H, Hubert PH (1995) gp13 (EHV-gC): a complement receptor induced by equine herpesviruses. Virus Res 37:113–126

    Article  CAS  PubMed  Google Scholar 

  • Hwang S, Kim KS, Flano E, Wu TT, Tong LM, Park AN, Song MJ, Sanchez DJ, O’Connell RM, Cheng G, Sun R (2009) Conserved herpesviral kinase promotes viral persistence by inhibiting the IRF-3-mediated type I interferon response. Cell Host Microbe 5:166–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ICTV (2015) Virus taxonomy: 2015 release [Online]. EC 47, International Committee on Taxonomy of Viruses (ICTV), London, UK. http://www.ictvonline.org/virusTaxonomy.asp. Accessed 2015

  • Ikuta K, Ueda S, Kato S, Hirai K (1983a) Monoclonal antibodies reactive with the surface and secreted glycoproteins of Marek’s disease virus and herpesvirus of turkeys. J Gen Virol 64(Pt 12):2597–2610

    Article  CAS  PubMed  Google Scholar 

  • Ikuta K, Ueda S, Kato S, Hirai K (1983b) Most virus-specific polypeptides in cells productively infected with Marek’s disease virus or herpesvirus of turkeys possess cross-reactive determinants. J Gen Virol 64(Pt 4):961–965

    Article  CAS  PubMed  Google Scholar 

  • Isfort RJ, Stringer RA, Kung HJ, Velicer LF (1986) Synthesis, processing, and secretion of the Marek’s disease herpesvirus A antigen glycoprotein. J Virol 57:464–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izumiya Y, Izumiya C, van Geelen A, Wang DH, Lam KS, Luciw PA, Kung HJ (2007) Kaposi’s sarcoma-associated herpesvirus-encoded protein kinase and its interaction with K-bZIP. J Virol 81:1072–1082

    Article  CAS  PubMed  Google Scholar 

  • Jacob T, van den Broeke C, Favoreel HW (2011) Viral serine/threonine protein kinases. J Virol 85:1158–1173

    Article  CAS  PubMed  Google Scholar 

  • Jarosinski KW, Osterrieder N (2010) Further analysis of Marek’s disease virus horizontal transmission confirms that U(L)44 (gC) and U(L)13 protein kinase activity are essential, while U(S)2 is nonessential. J Virol 84:7911–7916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarosinski KW, Osterrieder N (2012) Marek’s disease virus expresses multiple UL44 (gC) variants through mRNA splicing that are all required for efficient horizontal transmission. J Virol 86:7896–7906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarosinski KW, Vautherot JF (2015) Differential expression of Marek’s disease virus (MDV) late proteins during in vitro and in situ replication: role for pUL47 in regulation of the MDV UL46-UL49 gene locus. Virology 484:213–226

    Article  CAS  PubMed  Google Scholar 

  • Jarosinski KW, Arndt S, Kaufer BB, Osterrieder N (2012) Fluorescently tagged pUL47 of Marek’s disease virus reveals differential tissue expression of the tegument protein in vivo. J Virol 86:2428–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarosinski KW, Margulis NG, Kamil JP, Spatz SJ, Nair VK, Osterrieder N (2007) Horizontal transmission of Marek’s disease virus requires US2, the UL13 protein kinase, and gC. J Virol 81:10575–10587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarosinski KW, Njaa BL, O’Connell PH, Schat KA (2005a) Pro-inflammatory responses in chicken spleen and brain tissues after infection with very virulent plus Marek’s disease virus. Viral Immunol 18:148–161

    Article  CAS  PubMed  Google Scholar 

  • Jarosinski KW, Osterrieder N, Nair VK, Schat KA (2005b) Attenuation of Marek’s disease virus by deletion of open reading frame RLORF4 but not RLORF5a. J Virol 79:11647–11659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan TR, Baseman JB (2000) Hemolytic and hemoxidative activities in mycoplasma penetrans. Infect Immun 68:6419–6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato K, Kawaguchi Y, Tanaka M, Igarashi M, Yokoyama A, Matsuda G, Kanamori M, Nakajima K, Nishimura Y, Shimojima M, Phung HT, Takahashi E, Hirai K (2001) Epstein-Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1delta (EF-1delta): EF-1delta is universally modified by conserved protein kinases of herpesviruses in mammalian cells. J Gen Virol 82:1457–1463

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Yamamoto M, Ohno T, Tanaka M, Sata T, Nishiyama Y, Kawaguchi Y (2006) Herpes simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and regulates nuclear localization of viral envelopment factors UL34 and UL31. J Virol 80:1476–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y, Kato K, Tanaka M, Kanamori M, Nishiyama Y, Yamanashi Y (2003) Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1delta. J Virol 77:2359–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y, Matsumura T, Roizman B, Hirai K (1999) Cellular elongation factor 1delta is modified in cells infected with representative alpha-, beta-, or gammaherpesviruses. J Virol 73:4456–4460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y, van Sant C, Roizman B (1998) Eukaryotic elongation factor 1delta is hyperphosphorylated by the protein kinase encoded by the U(L)13 gene of herpes simplex virus 1. J Virol 72:1731–1736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinchington PR, Ling P, Pensiero M, Gershon A, Hay J, Ruyechan WT (1990) A possible role for glycoprotein gpV in the pathogenesis of varicella-zoster virus. Adv Exp Med Biol 278:83–91

    Article  CAS  PubMed  Google Scholar 

  • Kostavasili I, Sahu A, Friedman HM, Eisenberg RJ, Cohen GH, Lambris JD (1997) Mechanism of complement inactivation by glycoprotein C of herpes simplex virus. J Immunol 158:1763–1771

    CAS  PubMed  Google Scholar 

  • Krosky PM, Baek MC, Coen DM (2003a) The human cytomegalovirus UL97 protein kinase, an antiviral drug target, is required at the stage of nuclear egress. J Virol 77:905–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krosky PM, Baek MC, Jahng WJ, Barrera I, Harvey RJ, Biron KK, Coen DM, Sethna PB (2003b) The human cytomegalovirus UL44 protein is a substrate for the UL97 protein kinase. J Virol 77:7720–7727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuny CV, Chinchilla K, Culbertson MR, Kalejta RF (2010) Cyclin-dependent kinase-like function is shared by the beta- and gamma- subset of the conserved herpesvirus protein kinases. PLoS Pathog 6:e1001092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langeland N, Oyan AM, Marsden HS, Cross A, Glorioso JC, Moore LJ, Haarr L (1990) Localization on the herpes simplex virus type 1 genome of a region encoding proteins involved in adsorption to the cellular receptor. J Virol 64:1271–1277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Liao G, Nirujogi RS, Pinto SM, Shaw PG, Huang TC, Wan J, Qian J, Gowda H, Wu X, Lv DW, Zhang K, Manda SS, Pandey A, Hayward SD (2015) Phosphoproteomic profiling reveals Epstein-Barr virus protein kinase integration of DNA damage response and mitotic signaling. PLoS Pathog 11:e1005346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li R, Wang L, Liao G, Guzzo CM, Matunis MJ, Zhu H, Hayward SD (2012) SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol 86:5412–5421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Zhu J, Xie Z, Liao G, Liu J, Chen MR, Hu S, Woodard C, Lin J, Taverna SD, Desai P, Ambinder RF, Hayward GS, Qian J, Zhu H, Hayward SD (2011) Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host Microbe 10:390–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Littler E, Stuart AD, Chee MS (1992) Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Nature 358:160–162

    Article  CAS  PubMed  Google Scholar 

  • Long MC, Leong V, Schaffer PA, Spencer CA, Rice SA (1999) ICP22 and the UL13 protein kinase are both required for herpes simplex virus-induced modification of the large subunit of RNA polymerase II. J Virol 73:5593–5604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lubinski J, Nagashunmugam T, Friedman HM (1998a) Viral interference with antibody and complement. Semin Cell Dev Biol 9:329–337

    Article  CAS  PubMed  Google Scholar 

  • Lubinski JM, Wang L, Soulika AM, Burger R, Wetsel RA, Colten H, Cohen GH, Eisenberg RJ, Lambris JD, Friedman HM (1998b) Herpes simplex virus type 1 glycoprotein gC mediates immune evasion in vivo. J Virol 72:8257–8263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lubinski J, Wang L, Mastellos D, Sahu A, Lambris JD, Friedman HM (1999) In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC. J Exp Med 190:1637–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubinski JM, Jiang M, Hook L, Chang Y, Sarver C, Mastellos D, Lambris JD, Cohen GH, Eisenberg RJ, Friedman HM (2002) Herpes simplex virus type 1 evades the effects of antibody and complement in vivo. J Virol 76:9232–9241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahony TJ, Hall RN, Walkden-Brown S, Meers J, Gravel JL, West L, Hardy V, Islam AF, Fowler EV, Mitter N (2015) Genomic deletions and mutations resulting in the loss of eight genes reduce the in vivo replication capacity of Meleagrid herpesvirus 1. Virus Genes 51:85–95

    Article  CAS  PubMed  Google Scholar 

  • Mardberg K, Nystrom K, Tarp MA, Trybala E, Clausen H, Bergstrom T, Olofsson S (2004) Basic amino acids as modulators of an O-linked glycosylation signal of the herpes simplex virus type 1 glycoprotein gC: functional roles in viral infectivity. Glycobiology 14:571–581

    Article  CAS  PubMed  Google Scholar 

  • Marschall M, Freitag M, Suchy P, Romaker D, Kupfer R, Hanke M, Stamminger T (2003) The protein kinase pUL97 of human cytomegalovirus interacts with and phosphorylates the DNA polymerase processivity factor pUL44. Virology 311:60–71

    Article  CAS  PubMed  Google Scholar 

  • Marschall M, Marzi A, aus dem Siepen P, Jochmann R, Kalmer M, Auerochs S, Lischka P, Leis M, Stamminger T (2005) Cellular p32 recruits cytomegalovirus kinase pUL97 to redistribute the nuclear lamina. J Biol Chem 280:33357–33367

    Article  CAS  PubMed  Google Scholar 

  • Mavroidis M, Sunyer JO, Lambris JD (1995) Isolation, primary structure, and evolution of the third component of chicken complement and evidence for a new member of the alpha 2-macroglobulin family. J Immunol 154:2164–2174

    CAS  PubMed  Google Scholar 

  • Mcnearney TA, Odell C, Holers VM, Spear PG, Atkinson JP (1987) Herpes simplex virus glycoproteins gC-1 and gC-2 bind to the third component of complement and provide protection against complement-mediated neutralization of viral infectivity. J Exp Med 166:1525–1535

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Hagemeier SR, Kuny CV, Kalejta RF, Kenney SC (2010) Simian virus 40 T/t antigens and lamin A/C small interfering RNA rescue the phenotype of an Epstein-Barr virus protein kinase (BGLF4) mutant. J Virol 84:4524–4533

    Article  PubMed  PubMed Central  Google Scholar 

  • Mettenleiter TC (1989) Glycoprotein gIII deletion mutants of pseudorabies virus are impaired in virus entry. Virology 171:623–625

    Article  CAS  PubMed  Google Scholar 

  • Michel D, Pavic I, Zimmermann A, Haupt E, Wunderlich K, Heuschmid M, Mertens T (1996) The UL97 gene product of human cytomegalovirus is an early-late protein with a nuclear localization but is not a nucleoside kinase. J Virol 70:6340–6346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moffat JF, Zerboni L, Kinchington PR, Grose C, Kaneshima H, Arvin AM (1998a) Attenuation of the vaccine Oka strain of varicella-zoster virus and role of glycoprotein C in alphaherpesvirus virulence demonstrated in the SCID-hu mouse. J Virol 72:965–974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moffat JF, Zerboni L, Sommer MH, Heineman TC, Cohen JI, Kaneshima H, Arvin AM (1998b) The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse. Proc Natl Acad Sci U S A 95:11969–11974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison EE, Wang YF, Meredith DM (1998) Phosphorylation of structural components promotes dissociation of the herpes simplex virus type 1 tegument. J Virol 72:7108–7114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mwangi WN, Smith LP, Baigent SJ, Beal RK, Nair V, Smith AL (2011) Clonal structure of rapid-onset MDV-driven CD4+ lymphomas and responding CD8+ T cells. PLoS Pathog 7:e1001337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Kagami H, Tagami T (2013) Development, differentiation and manipulation of chicken germ cells. Dev Growth Differ 55:20–40

    Article  PubMed  Google Scholar 

  • Ng TI, Grose C (1992) Serine protein kinase associated with varicella-zoster virus ORF 47. Virology 191:9–18

    Article  CAS  PubMed  Google Scholar 

  • Nishijima K, Iijima S (2013) Transgenic chickens. Dev Growth Differ 55:207–216

    Article  PubMed  Google Scholar 

  • Ogembo JG, Kannan L, Ghiran I, Nicholson-Weller A, Finberg RW, Tsokos GC, Fingeroth JD (2013) Human complement receptor type 1/CD35 is an Epstein-Barr virus receptor. Cell Rep 3:371–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osterrieder N (1999) Construction and characterization of an equine herpesvirus 1 glycoprotein C negative mutant. Virus Res 59:165–177

    Article  CAS  PubMed  Google Scholar 

  • Osterrieder N, Wallaschek N, Kaufer BB (2014) Herpesvirus genome integration into telomeric repeats of host cell chromosomes. Annu Rev Virol 1:215–235

    Article  PubMed  CAS  Google Scholar 

  • Ouwendijk WJ, Verjans GM (2015) Pathogenesis of varicelloviruses in primates. J Pathol 235:298–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overton H, Mcmillan D, Hope L, Wong-Kai-In P (1994) Production of host shutoff-defective mutants of herpes simplex virus type 1 by inactivation of the UL13 gene. Virology 202:97–106

    Article  CAS  PubMed  Google Scholar 

  • Overton HA, Mcmillan DJ, Klavinskis LS, Hope L, Ritchie AJ, Wong-Kai-In P (1992) Herpes simplex virus type 1 gene UL13 encodes a phosphoprotein that is a component of the virion. Virology 190:184–192

    Article  CAS  PubMed  Google Scholar 

  • Park J, Lee D, Seo T, Chung J, Choe J (2000) Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) open reading frame 36 protein is a serine protein kinase. J Gen Virol 81:1067–1071

    Article  CAS  PubMed  Google Scholar 

  • Petherbridge L, Brown AC, Baigent SJ, Howes K, Sacco MA, Osterrieder N, Nair VK (2004) Oncogenicity of virulent Marek’s disease virus cloned as bacterial artificial chromosomes. J Virol 78:13376–13380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prichard MN, Britt WJ, Daily SL, Hartline CB, Kern ER (2005) Human cytomegalovirus UL97 kinase is required for the normal intranuclear distribution of pp65 and virion morphogenesis. J Virol 79:15494–15502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prichard MN, Gao N, Jairath S, Mulamba G, Krosky P, Coen DM, Parker BO, Pari GS (1999) A recombinant human cytomegalovirus with a large deletion in UL97 has a severe replication deficiency. J Virol 73:5663–5670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purchase HG, Burmester BR, Cunningham CH (1971) Responses of cell cultures from various avian species to Marek’s disease virus and herpesvirus of turkeys. Am J Vet Res 32:1811–1823

    CAS  PubMed  Google Scholar 

  • Purves FC, Ogle WO, Roizman B (1993) Processing of the herpes simplex virus regulatory protein alpha 22 mediated by the UL13 protein kinase determines the accumulation of a subset of alpha and gamma mRNAs and proteins in infected cells. Proc Natl Acad Sci U S A 90:6701–6705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purves FC, Roizman B (1992) The UL13 gene of herpes simplex virus 1 encodes the functions for posttranslational processing associated with phosphorylation of the regulatory protein alpha 22. Proc Natl Acad Sci U S A 89:7310–7314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riva L, Thiry M, Bontems S, Joris A, Piette J, Lebrun M, Sadzot-Delvaux C (2013) ORF9p phosphorylation by ORF47p is crucial for the formation and egress of varicella-zoster virus viral particles. J Virol 87:2868–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roizman B, Knipe DM, Whitley RJ (2007) Herpes simplex viruses. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Rue CA, Ryan P (2002) Characterization of pseudorabies virus glycoprotein C attachment to heparan sulfate proteoglycans. J Gen Virol 83:301–309

    Article  CAS  PubMed  Google Scholar 

  • Rux AH, Moore WT, Lambris JD, Abrams WR, Peng C, Friedman HM, Cohen GH, Eisenberg RJ (1996) Disulfide bond structure determination and biochemical analysis of glycoprotein C from herpes simplex virus. J Virol 70:5455–5465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schermuly J, Greco A, Hartle S, Osterrieder N, Kaufer BB, Kaspers B (2015) In vitro model for lytic replication, latency, and transformation of an oncogenic alphaherpesvirus. Proc Natl Acad Sci U S A 112:7279–7284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibaki T, Suzutani T, Yoshida I, Ogasawara M, Azuma M (2001) Participation of type I interferon in the decreased virulence of the UL13 gene-deleted mutant of herpes simplex virus type 1. J Interf Cytokine Res 21:279–285

    Article  CAS  Google Scholar 

  • Silva RF, Lee LF (1984) Monoclonal antibody-mediated immunoprecipitation of proteins from cells infected with Marek’s disease virus or Turkey herpesvirus. Virology 136:307–320

    Article  CAS  PubMed  Google Scholar 

  • Smith DK, Xue H (1997) Sequence profiles of immunoglobulin and immunoglobulin-like domains. J Mol Biol 274:530–545

    Article  CAS  PubMed  Google Scholar 

  • Spatz SJ, Zhao Y, Petherbridge L, Smith LP, Baigent SJ, Nair V (2007) Comparative sequence analysis of a highly oncogenic but horizontal spread-defective clone of Marek’s disease virus. Virus Genes 35:753–766

    Article  CAS  PubMed  Google Scholar 

  • Spatz SJ, Smith LP, Baigent SJ, Petherbridge L, Nair V (2011) Genotypic characterization of two bacterial artificial chromosome clones derived from a single DNA source of the very virulent gallid herpesvirus-2 strain C12/130. J Gen Virol 92:1500–1507

    Article  CAS  PubMed  Google Scholar 

  • Spear PG, Longnecker R (2003) Herpesvirus entry: an update. J Virol 77:10179–10185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoiber H, Clivio A, Dierich MP (1997) Role of complement in HIV infection. Annu Rev Immunol 15:649–674

    Article  CAS  PubMed  Google Scholar 

  • Sullivan V, Talarico CL, Stanat SC, Davis M, Coen DM, Biron KK (1992) A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells. Nature 359:85

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Bristol JA, Iwahori S, Hagemeier SR, Meng Q, Barlow EA, Fingeroth JD, Tarakanova VL, Kalejta RF, Kenney SC (2013) Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol 87:10126–10138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szpara ML, Gatherer D, Ochoa A, Greenbaum B, Dolan A, Bowden RJ, Enquist LW, Legendre M, Davison AJ (2014) Evolution and diversity in human herpes simplex virus genomes. J Virol 88:1209–1227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szpara ML, Parsons L, Enquist LW (2010) Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations. J Virol 84:5303–5313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tal-Singer R, Peng C, Ponce de Leon M, Abrams WR, Banfield BW, Tufaro F, Cohen GH, Eisenberg RJ (1995) Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. J Virol 69:4471–4483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Nishiyama Y, Sata T, Kawaguchi Y (2005) The role of protein kinase activity expressed by the UL13 gene of herpes simplex virus 1: the activity is not essential for optimal expression of UL41 and ICP0. Virology 341:301–312

    Article  CAS  PubMed  Google Scholar 

  • Tanner J, Whang Y, Sample J, Sears A, Kieff E (1988) Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes. J Virol 62:4452–4464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tischer BK, Schumacher D, Chabanne-Vautherot D, Zelnik V, Vautherot JF, Osterrieder N (2005) High-level expression of Marek’s disease virus glycoprotein C is detrimental to virus growth in vitro. J Virol 79:5889–5899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Zeijl M, Fairhurst J, Baum EZ, Sun L, Jones TR (1997) The human cytomegalovirus UL97 protein is phosphorylated and a component of virions. Virology 231:72–80

    Article  PubMed  Google Scholar 

  • Wald A, Corey L (2007) Persistence in the population: epidemiology, transmission. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang JT, Doong SL, Teng SC, Lee CP, Tsai CH, Chen MR (2009) Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. J Virol 83:1856–1869

    Article  CAS  PubMed  Google Scholar 

  • Witter RL, Burgoyne GH, Burmester BR (1968) Survival of Marek’s disease agent in litter and droppings. Avian Dis 12:522–530

    Article  CAS  PubMed  Google Scholar 

  • Wolf DG, Courcelle CT, Prichard MN, Mocarski ES (2001) Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation. Proc Natl Acad Sci U S A 98:1895–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Klaus Osterrieder for critically evaluating the review. The data generated for this review were conducted with support from Agriculture and Food Research Initiative competitive grant nos. 2010-65119-20493, 2013-67015-21333, and 2016-67015-24917 from the USDA National Institute of Food and Agriculture to KWJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith W. Jarosinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jarosinski, K.W. (2017). Interindividual Spread of Herpesviruses. In: Osterrieder, K. (eds) Cell Biology of Herpes Viruses. Advances in Anatomy, Embryology and Cell Biology, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-53168-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53168-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53167-0

  • Online ISBN: 978-3-319-53168-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics